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FOREWORD

The Twenty-Sixth Conference on the Design of Experiments (DOE) in Army
Research, Development and Testing was held 22-24 October 1980 and had

as its host the U. S. Army White Sands Missile Range (WSMR). Dr. Richard

H. Duncan, Technical Director and Chief Scientist, WSMR, made many of the
initial plans for this meeting. In particular, he contacted Dr. Harold Law,
Associate Academic Vice-President, New Mexico State University and made
arrangements with him to hold the conference at his university. The

Army Mathematics Steering Committee (AMSC), sponsor of these conferences,
would Yike to thank New Mexico State University for providing such

excellent facilities for this meeting.

Dr. Duncan asked Ms. Peggy Hoffer, of the WSMR Plans Office, to serve
as chairman on Local Arrangements for this conference; and Mr. Robert
Green, of the Instrumentation Directorate, to handle any technical
problems associated with the program. These individuals, together with
many other members of the WSMR, helped make this, the 26th Conference,
a very successful and interesting meeting.

The Subcommittee for Probability and Statistics, chaired by Dr. Douglas

B. Tang, §s responsible to the AMSC for conducting these Army conferences.
Dr. Tang asked Dr. Frank E. Grubbs to be Chairman of the Program Committee
for the 1980 conference. One of the first acts of this committee was to
select "Data Analysis" as the theme of this meeting. This was a wise
choice because of the large amount of analytical and statistical work in
testing and modeling performed within the many agencies located on the
base of the host installation. At the first meeting of the Program
Committee, the following national known scientists were selected as the
invited speakers for this year's conference.

Speaker and Affiliation Title of Address

Professor Francis J. Anscombe How Far to go in Looking at Data

Yale University

Dr. Toby J. Mitchell Design of Erperiments

Union Carbide Nuclear Division

Professor W. J. Conover The Rank Transformation as a Robust

Texas Tech University and Powerful Tool for the Analysis
of Experimental Data

Professors James R. Thompson, The lionparametric Estimatien of

Chih-Chy Fwu, and Richard Probability Densitiec in Callistic

A. Tapia Research

Rice Unijversity

Professor Victor Solo [ngineering Time Series Analysis
Harvard University

Professor Richard A. Johnson “tress-Strength Models for Peliatility-
Univeisity of Wisconsin Overview and Recent Advances




Professor Badrig Kurkjian, Professor of Statistics at the University of
Alabama, is at the present time, chairman of the committee to select the
recipient of the Samuel S. Wilks Memorial Medal. On 19 June 1980 he

advised Dr. Robert Launer, secretary of the Design of Experiments Conference,
that Dr. W. Allen Wallis, Chancellor and Professor of Statistics and
Economics at the University of Rochester, had been selected as the 1980

Wilks Medalist. This distinguished scientist richly deserves this honor

for his contributions to applied statistics.

On 20-21 October 1980, just preceding the start of the DOE conference, a
special tutorial on Applied Regression Analysis was held. This tutorial
was designed for engineers, scientists and statisticians who are involved
in analyzing least squares data, the associated statistical inferences
and model building. The instructor for this informative course was

Professor Norman Draper, Department of Statistics, University of Wisconsin
and the Mathematics Research Center.

The AMSC has asked that these proceedings be distributed Army-wide to
enable those who could not attend this conference, as well as those that
were present, to profit from some of the scientific ideas presented by
the speakers. The members of the AMSC would 1ike to take this occasion
to thank all the speakers for their interesting presentations and also

the members of the Program Committee for their many contributions to
this scientific meeting.

Program Committee

Car) Bates

Robert Launer (Secretary)
George E. P. Box

Douglas Tang (Chairman,
Prob. & Stat. Subcommittee)
Malcolm Taylor

Langhorne Withers
Frank E. Grubbs (Program
Committee Chairman?

Larry Crow
Walter Foster
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Dear tonfercnce Participant:

It is our pleasure to have you attend the Pwenty-Sixth Conference on the
Desiyn of Experiments in Army Pescarch, Development, and Testing.  We hope
this conterence will provide new wnd relevant information winch will he
useful to you in vour future endeavors,

During ynur stay 1n Las Crices we also hope vou will tabe the sfportisaty
. to visit the rest of the New Mexico State University acpus and shite
Sands Missile Range,

New Mexico State Dniversity, founded wn 1888, has grown into a major
institution of higiwr education. In its Jevelopment, the (miversity has
preserved many of the traditions of 1ts land-grant origin while moving

» U
toward increased emphasis of the huewanities, liberal arts, aad natural
sciences. The mission of New Mexice State University 13 2o benefil
society throuph education, resvarch, and public service. o carrmy out
its mission, the tiniversity cperates the Apricultural Lgerimental
Station, the Arts and Scienves Rescarch Center, the Conter for Susiness
Research and Service, the New Meaico Pnerev [nstitute, fne Sew R'vico
Solar Energy Institute, the Imuancering iaxperiment Statoon, the Mbunta:n
Laboratory, the Phvsical Scicne lahoratory, and many cther cducaticnal,
research, and service centers. )

White Sandy Missile Rnge, established as white S.nds Proviag Srcund on
9 July 1945, represents the fatgest iand mos under controf o st tnated
States Army (over two millien aoresy.  [ogether with 1ts remote launcn
areas in Utah, 1t allows tor missile flights of about 550 miles.
tts establushment, the Renee bos ovolved 1nto cne of tine rmst o odern test
factlities 1or use by the Jofonne Advanced Bewoarch Prosects agency, my,
Navy, Air Jorce, National Veronantics and Space Administration, departrent
of Energv, and others. '

We hope vou will have an nteresten, onrovabie, and fratial <tay.

i -
ﬂa-' A’ M ﬂ&é&—ﬁ"»""r};’a‘.
MAN N M T N I B PR
Magor taencral, s, Presadent .
Commandany Geneial New Mexgon State thaeereat s

US Ay White Sands Misstle Rang.e

Best Available Copy
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THE TWENTY-SIXTH CONFERENCE ON THE DESION OF CXPER[MENTS [N
ARMY RESEARCM, DEVELUGPVENT AND YESTING
22-24 October 1980
Most: white Sands Missile Range

lLocation:  Physici ciences Laboratary,
New Yexico State Universtty

esoes yegnesday, 2¢ Octoder etrer

93815-091% RESISTRATION -+ Lobby, Physical Sciences Lahoratory
0915.0930 CALLING OF THE CONFEREMNCE TO ORDER -+ Auditoriym®
Dr. Richard H. Duncan, Technical Director and Cnief
Scientist, wWhite Sands M'sstle Range
WELCOMING REMARKS
MG Alan A. Nard. Commander, White Sands Missile Range
Or. <3rold 4. Daw, Assncigte Academic Vice-President,
New Mexicu State University
0930-1200 GENERAL SESSION ©
Charrman « Frank £, Grudts, Program (ommittee Cnarrmon,
Aberdeen Proving Ground, Maryland
0930-1930 rEYNGTE ADDRESS
francrs J. Anscombe, Department of Statistics,
Tale univers:ty
1030-1100 BRIAK
1100-1200 design of Exceriments (Title o be announced)
*oby J. Mitzhell, Union Carbide Nuclear Division, Nak
Pidge, Tennessee
1200-1330 LUMCH
TEYT hereral Seon o, ~lraieal Lesstins ind Technical tessicn ¢ w1l
e Aeld tnosme ALt Gregn, Sy ccal jcienias Liboratory.
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1330-1500 CLINICAL SESSION A

= CHAIRMAN: Lounell Snudgrass, US Army TRADDC Systuems Analysis
Activity, White 5ands Missile Range, New Mexico

PANELISTS:

W. J. Conover, Department of Business Administration, Texas
Tech University, Lubbock, Texas

W. D, Kaigh, Department of Mathematical Sciences, University
of Texas-E} Paso

Toby J. Mitchell, Union Carbide Nuclear Division, Oak Ridge,
Tennessee

THE USE OF RIOGE REGRESSIUM [N TRAJECTORY ESTIMATION

Willlam S. Agee and Robert H. Turner, White Sands Missile
Range, New Mexico

A SEVEN VARIABLE COMPOSITE DESIGN FOR FITTING A SECOND
ORDER RESPONSE SURFACE

Carl B. Bates, US Army Concepts Ahalysis Agency, Bethesda,
Maryland

1330-1500 TECHNICAL SESSION [ - "STOCHASTIC MODELING" - ROOM €£-1104

CHAIRMAN: Roger Willig, US Army TRADOC Systems Analysis
Activity, White Sands Missile Ranqge, New Mexico

AN APPLICATION OF ORDER STATISTICS TO TIML-SEQUENCE LOGIC

William £, Baver and-Malcolm S. Taylor, Balliistic Research
Laboratory, Aberdeen Proving Ground, Maryland

STOCHASTIC MODELS: FOR PAIRS OF WAITING LINES

Mary Anne Maher, Department of Mathematicai Sciences,
New Mexico State University, Las Cruces

1500-1530  BREAK

Best Available Copy
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CHAIRMAN:  James Graves, White Sands Missile Range, New
Mexico

INFEREMCE PROCEDURCS FOR DETERMINING LIFE TIME ESTIMATES
OF ADVANCED MATERIALS

Donald Neal, Edward Lenoc and Donald Mason, US Army
Materials and Mechanics Research Center, Watertown,
Massachusetts

RISKS TO NiIGHBORING FACILITIES

Paul C. Cox, Physical Sciences Laboratory and Uxperimental
Statistics Department, New Mexicu State University,

Las Cruces :
SOCIAL MOUR - Dona Ana Room, Holiday Inn de Las Cruces

BANOULT
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William S. Agee and Jose £. Gomez, #hite Sands Missile
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FITTING AN ELUPSE
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AL THOIS FOR APPROYIMATING MATHLMATICAL FUNCTIONS
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1000-1030 BREAY
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Aberdeen Proving Uround, Marylang

Best Available Cop®

Xiv



1030-1220

1200-1130
1330-1310

o

PANELIST: -

francts J. Anscoabe, DepartrenY of Statistics, Yale
Univers ily, New Haven, Connecticut

W. J. fcnover, Departrent of Business idninistration, Texas
Tech niversaty, Lubbock, Texas

Frark Grubbs, US Amy "ateriel Systems Analystis Activity,
Aber jeen Proving Ground, Maryland

MOS “RAINING COURSE SZLECTION “2ITERIA: A% APPLICATION OF
DISCITMINANT ANALYSIS

Pat Cassady and Lounall :rodgrass, US Army TAADXC Systems
Aralysis Activity, White Sands “issile Range, ‘iew Mexico

ARMOR COMBAT FCR MODEL SUPPORT {ARCOMS)

Roger F. Willis, US Army TRADCC Systems Analysis Activity,
Ahite Sands Missile Range, New Mexico )

TECHNICAL SESSION 1V - “QUANTILE STATISTICS” - RCOM

”m

-1104

CHAIRMAN: -Rober: H. Turner, White Sands Missile Rarge,
New Yexico

[XTREME VALUL QUANTILL RESPONGE FXPERIMONTAL DESIGN

3111 M. “mith and Jerry Thomas, Rallistic iteseerch Lshoratory,
Aberdeen Proving Ground, Maryland

A GENERALIZED NUANTILE ESTIMATOR

W. 0. XKaigh, Department of Mathematical Sciences, University
of Texas-El Paso

LUNCH
ENERAL SESSION 1

CUATRMANM: ~ Robert L. Lywner, US Army Rosoaren 3ffrige,
Baonarch Trrapdle Park, North carnting

TWE RANK TRANSFORMATION AL A #NRUST ANG PURERFUL TOOL FOR
THE ANALYSIS OF CXPCRINMINTAL DATA

w. J. Conover, Department of Business Admin:stration, Texas
Tech University, Lubbock, Texas

Best Available Copy

XV



1530-1600
1600-1700

1600-1700

THE HONPARAME TRIC ESTIMATION OF PROBABILITY DENSITIES [N
BALLISTICS RESEARCH

James R. Thompson, Chih-chy Fwu, and Richard A. Tapra,
Department of Mathematical Sciences, Rice Universaty,
Houston, Texas

BREAK

TECHMICAL SESSION V - "DESICN OF EXPERIMENTS AND LINEAR
- T T Mol

CHAIRMAN: Robert Green, White Sands Missile Range, New
Merico

TESTABILITY OF LINDAR HYPOTHESES IN NORMAL LINEAR MOOELS

Gerald S. Rogers, Department of Mathematical Sciences,
New Mexico State University, Las Cruces, New Mexico

THE POTENTIAL UTILITY OF CROSSING A FRACTIONAL FACTORIAL
WITH A FULL FACTORIAL IN THE DESIGN OF FIELD TESTS

Carl T. Russell, US Army Cold Reqions Test Center, Seattle,
Washington : :

SOMEL REMARKS N ANALYSIS OF CROSSOVER EXPERIMINTS

J. Robert Burge, Departrent of Biostatistics, Walter Reed
Army Institute »f Research, Washington, OC

TECHNICAL SESSION VU - "SPECLAL APPLICATIONS OF SPECTRAL
AALYSYS™ - ROOM e-11d

CHATKRMAN:  Paut «, Cow, Physical Sciences Lahoratory and
Lxperimental Statistics Department, Now Mexico
State Umiversaty, Las Cruces, New Mexico

A TIME SERILS AHALYSTS AND MODFLING APPROACH OF SENSL AND

DESTROY ARMOR (SADARMY BADIOMLTRIC (Flectromagnetic Radiation)
ROIST OATA

Richard T, Maruyvama, Jalhistic Research ! aburatory, Aberdeen
Proving Ground, Mary band :

THE ROLE OF SPLCTRAL | IMITS IN THE MEASUREMINT AND INTLR.
PRETAVION OF SECUND-URDER STATISTICAL PROPLRTILS

L. L. Church, % Army Armament Resedrch and Development,
Loemand, Dovoer, lloew Jersey

Best Available Copy

AT



1600-1730

0800-0930

0300-0230

TECHNICAL SESSION VII - "RELIABILITY" - RNOM EB-01%

CHAIRMAN: Paul Thrasher, White Sands Missile Range, New
Mexico

DEVELOPMENT OF AN IDEALIZED GROWTH CURVE MODEL

Larry H. Crow, US Amy Materie! Systems Analysis Activity,
Aberdeen Proving Ground, Maryland

OPTIMAL CONF [DENCE BOUNDS OM SYSTEM RELIABILITY

-Bernard Harris, University of Wisconsin-Madison and

Andrew P. ftoms, UniversiLy of Wisconsin-Milwaukee

wvessfriday, 24 October *vevs
CLINICAL SESSION E

CHAIRMAN: Carl Bates, US Armmy Concepts Analysis Agency,
Bathesda, Maryland

PANELISTS:

Bernard Harris, Mathematics Research Center, uUniversity of
Wisconsin-Madison

Richard A. Johnson, Uepartment of Statistics, University of
Wisconsin-Medison

RELTABILITY-EASED SAFETY FACTCR FOR ZONCRETE STRUCTURES
SLIDING STABILITY

Paul F. Mlaker, JS Army Waterways Exveriment Station,
Vicksburg, Mississippi

FULY UTILIZATION OF B8L00D TES'S IN PATERNITY DISPUTES
Paul Thrasher, White Sands Missile Range, New Mexicd

TECHNICAL SESSTON YITI - “STOCHASTIC MODELING 11" - ROOM £-1104

CHAIRMAN: Peqqy Hoffer, White Sands Missile Range. New Mexico
AN ALGORITHM FOR TRILATERATION
Jﬂmes T. Hall, white Sands Missile Ranqge, New Mexico

SUTAL SCLENTIST TECANIQUE - THE CATALYST (OR OBTAINING
DBJECTIVITY SuoM SUBJICTIVITY

Roneld L. Johason, 5 Armay Mobility Eguiprent Research and
Devoloprent Command, L. Belvoir, Virginig '

Best Available Copy

wvid




ST T TR e T e oy sy ROy

prv-pertT e RN

E.
.-'

0930.1220 GENZRAL SESSICN 111

CHAIRMAN: - Dowglas 8. Tang, Department of Biostatistics,
Walter Reed Army [nstitute of Resedrch, Washington,
oc

OPEN VEETING ¥ THE AMSC SUBCOMMITTEE ON PROBABILITY AND

STATISTICS
1000-1030 BREAX
1030-1230 GENERAL SESSION [il (Contimued)

ENGINEERING TIME SEES ANALYSIS

Yictor Solo Cepar .ment of Stattsticy, Harvard University,
Camdridge, ™assacn,setts

STRESS-STRENGTH MODELS FOR RELIABILITY.QVERVIEW AND RECENT
ADVANCE S

Richard A. Jonnson, Department of Statistics, University of
Wisconsin, Magrson

1230 ADJOLRN
L ] L] L) L] . v . v
PROGRAN COMMITTEE
Cart Bates Rotert Launer [Sezretiry)
George £. ?. Box Jouglas Tang (lhgirman,
Prod. § SLat. Sudzoma:ttee)
Larry Crow Malcolm Taylor
Walter Foster Langhorne Withers

Frank I, urudbhs (Pragran
Committee Charman)

Xviii




TIPS, | SRR W Y o

acryeam ey ey il 4

A

-

WA s iy w1

HOW FAR TO GO IN LOOKING AT DATA®
F. J. Anscombe

Yale University
New Haven, Connecticut

A1l analysis of statistical data involves a balancing feat. On the one
hand, we do not examine the data with an empty mind, there are specific
questions we want to obtain answers to (that's why we assembled the data in
the first place), we have preconcep:i%g§ about the data, in examining the
data we should not forget what we were looking for. But on the other hand,
we should have an open mind, we should let the data speak for themselves, we
should not just assume that some theoretical model is appropriate without
checking. Yow far should we go in responding to unexpected features of the
data, how far should we Jet the data control the kinds of things we do; or
how far should we trust our preconceptiouns?

Now let me digress from that theme for just a moment. 1 have not only
been invited to speak at this conference, 1 have been asked to give the key-
note address. 1 think that a keynote address also involves a balancing feat.
On the one hand, a keynote address should be inspirational, or if not quite
inspirational at least interesting, or if not quite interesting at least
fairly intelligible. On the other hand, it is not one of the regular invited
papers or other real business of the conference. It should not try to steal
their thunder. It should not be too weighty or indfgestible--it should be
hors d'ocuvre rather than a main course. 7o perform this balancing feat, I
shall raise some questions that do not scem to be talked about much, but
which all of us are aware of, and which therefore should be somewhat inter-

esting to consider. In the interest of digestibility, I shall mostly refrain

*Prepared in conmnection with research supported by the Of fice of Nuval
Rescareh (contract NOUQ14-75-C-0563).
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from answering the questions--becauée in most cases I have no idea how to
angwer them. But at the end of the talk I will give a little information
about one of these questions that is possibly not well known, and to that
extent the talk will have a little content.

Forecasting time series. Earlier this year at a meeting I heard a talk on

short~term forecasting of business time series. The talk, which was very
well delivered, threw out a challenge rather vividly, and I have thought
about it quite a bit since. 1'd like to indicate the gist of the talk. (I
have not seen any write-up of the talk, what I'm saying may not adequately
represent the speaker's views, and so I will refrain from mentioning his
name.) The situation considered was this. He had several time series re-
lating to a business company, production, sales, various things, and also
public economic series; I think they were all quarterly series, and they
went back a good many years. The object was to forecast some of the series
for the next 1 or 2 or 3 quarters after the last observed value. A standard
method would be to use Box-Jenkins technology--fit a parametric class of
models to the data by maximum likelihood and use the fitted model to make
the forecast. The parametric class is quite wide, and 1if in fact it is wide
enough to represent reality adequately this procedure will be just about the
best possible. The procedure is fully describable, or programmable, and
therefore can be implemented completely by computer. The speaker didn't want

to do that. He had imbibed the spirit of John Tukey's Exploratory Data

Analysis. (Tukey does not discuss forecasting in his book, and I do not know
whether what the speaker did was similar to what Tukey mipght have done.) lle

plotted hig tlme serfcs and took a veod look ot them, e actilced that vound
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about 1973-74 the series seemed to change character. Something happened to
the economy (there was the oll crisis), and he judged that subsequent behavior
of the series was unlike the preceding behavior. So he felt that only data

after the change should be used in forecasting, although there were not many

[P

readings, and he proceeded to make (I think) some simple extrapolations by
eye. He expressed the opinion that it was better to do a rough-and-ready job

with just a few relevant reading< than a fancy job with a lot of readings

T A T A

that were mostly irrelevant. If indeed there was a big enough change in the
functioning of the economy in 1973-74 to make preceding data uninformative
about later behavior, then he c:rtainly had a case. How can vou tell? 1it's
a question about whether reality is better described in terms of Box-Jenkins
parametric models, or better understood by someone who makes judgments based
on plots and general background information, judgments that cannot (I think)

: be computer-programmed. The speaker seemed to think that obviously the
second was the case. I don't think it's obvious either way. Some things
could be done to investigate the matter, but nothing very easy or very

quick.

How much should we look at the data? Everyone agrees that we must sometimes,
to some extent, look at the data. Suppose we enterraln some probabilistic
model, ot more modestly some way of thinking about & phenomenon und possible
s observations. If this model or way of thinking is not vacuous, there are
some logically possible observations that conflict with it--otherwise it
tells us nothing. Therefore Lt behooves us to see¢ whether the observations

are consistent. Particular i{nstances of (his are vers weli known.

bt B Ll

So we must look at the observations a bit. The trouble is, 1t is ca.y




to be puzzled and misled if we look at them very much. A sample (from a
population or probability distribution or stochastic process) has many
individual features that do not reflect its source and would not persist
if the sample size were much increased. Given adequate computing power,
the question of how much to luok, how far to go, sutstrips avajllable sig-
nificance tests or other critical apparatus that might atid our judgment.
To refrain from examining the data because we do not know how to evaluate
what we see, that surely is foolish. To assume without evaluation that
everything seen is important, is foolish too.

The matter is brought home to me whenever I take a small random sample
from some distribution or process. Suppose I generate 50 observations from
N(0,1) . One of the readings is bigger than 3 and the estimated variance
is large. 1I take another sample and this time there are no outliers, the
largest reading is only about 1.5 and the sample looks as if it came from
a uniform distribution. I wonder if my program is wrong, so I go over the
program again and I take a much larger sample and make a goodness-of-fit test,
and then things seem 0.K.

I'd like to show what happened the last time I tried a simulation. I
was wanting to illustrate the difference between a stationary random sequence
that was jointly normally distributed (jointly Caussion) and a stationary
random sequence with the same autocorrelations (same moments of first and
second orders) and marginal normal distribution for any one member that was
not jointly normal and would have a less temporally homogeneous behavior.
The simplest examples would be Markov scquences, and I began with a Jag-1

¥

serial correlation coefficient cqual to :. Figure | shows the first 60
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members of a jointly normal sequence; and Figure 2 shows the first 60
members of a type of "jump" process which behaves in stretches like a
jointly normal random sequence with a bit higher lag-l1 serial correlation
(actually %), but every now and then there is a break and the next reading
is independent of its predecessors-—--sometimes at the break there is a big
jump. So the two sequences should look similar except for occasional big
jumps in the second process. Figure 2 looks as it is expected to, but not
Figure l---the first 20 readings move around a lot (with one very big jump
between the tenth and eleventh reading), then the later readings are much
less mobile. I can't heip thinking that the speaker I heard on time-series
forecasting would have identified a change in the economy round about
reading no. 20.

I was so disgusted with the untypical behavior of the first plot that
I scrapped them both and tried again, this time with a higher lag-l serial
correlation (%) which I thought would cramp the style of the jointly normal
process and make it behave better. Both plots (Figures 3 and 4) looked
reasonably "typical" of what I expected. (But note the apparent change in
direction of the jointly normal plot around reading no. 33.)

How many explanatory variables in regression? The question arises in dif-

ferent connections---sometimes very troublesome, sometimes casy to answer.
The easy case 18 a planned factorial experiment of the c¢lassic Filsherian

kind designed to permit estimation of the main effects of various factors

and all sorts of interactions. Often what happens {s that a few main effects

and perhaps a few interactions are large and interesting uad need to be duly

reported and understood, while the rest are samll and for most purposes can

w
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be ignored---it wasn't known in advance which effects would be large and
interesting, which small and ignorable. Usually the effects are orthogonal;
their meaning does not depend on what other effects are estimated. Provided
there are a few degrees of freedom for estimation of error, and provided ve
don't challenge the apprnprinleness of the model (structure) being fitted,
there is an easy answer to the question, how many effects to estimate:
estimate them all and then ignore any that aren't interesting.

The proviso that the appropriateness of the model being fitted isn't
challenged is important. I've already saic .hat it behooves us to verify
that models being fitted are consistent with the data. Supoos= we want to
check whether the (hypothetical) unexplained "error" term in the model seems
to be something like i.i.d. normal. The obvious thing to do is calculate
residuals from the estimated effects or regression relation. How closely
the resjduals reflect the hypothetical errors in the model depends on how

many effects or regression coefficients have been estimated. Tf many have

been estimated, there is a central limit effect---cach residual is an average

of many errors, and does not principally reflect one. To have informative

residuals, small effects should not be estimated but left in the residuals.
[The talk concluded by presenting some material from Appendix 2 of the

author's forthcoming book, Computing in Statistical Scjience through APL

(Springer). A rule for deciding how many effects to estimate, due to

J. W. Tukey, for the purpose of obtaining informative residuals, was described.

Then two further ruies were dcescribed, one of them based on C. 1. Mallows's
Cp statistie, designed to permit pood predfction of wnobserved values of the
dependent varjable. 1t was pointed out that these two purposes, informative

residuals and good prediction, though at first glance quite different, are

really closely related, and the three rules often lcad to the same result.
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THE USC OF RIDGL REGRESSIGH Iit TRAJECTORY ESTLHMATION

WiVliam 5. Agee and Robert H. Turner
Mathematical Seryices 8Branch
Data Sciences DNivision
US Army lhite Sands Missile Range
Hhite Sands Missile Ranae, New Mexico 82002

ABSTRACT. Conbining observations fron several different trajectory
‘measuring instruments we want to estimate the cartesian position (velocity)
coordinates of a trajectory at possibly a large nuiber of time points. Since
the measuring sysiems are subject to systematic rcasurerent ercors as well as
random Ineasuremant errors, in addition to estiisating the trajectory coordi-
nates ve also want to estimate the measurenent biases. Tne resulting estina-
tion problem is a combined linear and nonlincar estimation problen in which the
trajectory coordinates appear as nonlinear parameters in the measurements and
the biases appear as linear paraaeters in the measurcients. In practice we
have found that it is often necessary to statistically consirain the measure-
ment bias estimates by the use of Bayesion priors. These priors are assumed
to be normal usually with mean zero. Thus, the specification of the priors
is reduccd to the specification of a prior variance for each measurement bias.
There are no rules for choosing these prior variances and use of these guesses
may result in rather poor bies and trajectory estimates in which the estimated
bias vectors are too long and some of the biases may be of the wrong sign. We
have developed the use cof techniques very similar to ridge regression to treat
this problem. The use of ridae regression for this problem results in signifi-
cant innrovements in both the trajectory and bias estimates. We demonstrate
the use of tnis technique on several real trajectory estimation problems which
have arisen at ¥Siix. In thesec problems we are estimating a trajectory and
measuresient biases using ricasurements from several radars. In some of these
problems we also nave measurements from optical tracking systems which, since
they are more accurate and precise than radar, we use to prove the value of
the ridge regression technique for obtaining improved radar trajectory and bias
estimates. In using this ridge regression technigue we have been successful
in choosing a good value of the »ridge narameter by using the ridge trace method
propuscd by hoerl and Kcnnard., The ridge trace, although it is successful in
obtaining a good value of the ridge pareneter, is unsatisfactory in an auto-
mati¢ data processing procecure such as trajectory data reduction since a
ridge trace recuires human visual interorctation. /o have tried sone autc-
matic methods for selection of a good ridgc parameter value. So far, we
have been unsuccessful in these atteapts to develop an automatic method for
choosiny a good ridge parameter and we vould like to have this considered as

a clinical paper for the purpose of obtaining sone new ideas for developing
such a method.

1. TRAJECTORY ESTINATION. Heasurewents of range, azimuth, and eleva-
tion from several aitierent radars are used to estiniate the cartesian posi-
tion coordinates of a vehicle trajectory at a sequence of times, t., 1= 1, N
which cover the entire trajectory. Since the wmeasurcaents are subject to
systenatic errers as well as randoa measurcucnt orvors, we also want to csti-
mate tho systeatic error para.wetors or biases in addition to the trajectory
coordinates, The resulting estimatien problom is a cosbined linear and non-
Tincar ertization problew in vlidch the Grajectory coordinales appear as non-
Yincev pacsaetors in Lhe weasure weals asd the biases copear as linear para-
woters e L veo ureaents,
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Let h, (x ) be a measurement function where x is the cartesian position ',;
vector to the trajectory at time t If we have M different radars observing L
the trajectory, then a = 1, 3M. For a range measurement from the pih radar i

—— 2 2 ' 2.1y k!
ha(xi) = [(xi‘xp) + (yi'y ) ¢+ (zi-z ) ) 4 (1) §
where (x » Ypi Zp ) are the cartesian coordinates of the 4

origin of the local cartesian coord1nate system at the p-— radar. For an azi-

muth measurement from the pEh radar the measurement function is

h (x;) = tan”! +——FP (2)
o™ Yi = Yp :
For an elevation measurement from the th-radar
zZ, -2
h (%) = tan”’ i (3)

[ (xi-xp)2 + (yymyp) ] V2

Let za(ti) denote the observed value of the ash measurement. The observa-
tions are modeled as

2,(t) = b (X)) + b+ e (1) (4) %

where b is a constant measurement bias and e (1) is a zero mean, random
measurement error. Let b be a 3M-dimensional bias vector b = [b; b2-~b3M].
Then the measurement model can be represented as
z (t;) = h (x;) + s b+ e,i) ()
th

where S is a row vector with a one in the o— entry and zeros in all other
entries.

s,=[0 0---0" 0---0] (6)

oth a=— position

Let R (t ) be known variances of the random measurement errors, e (t ). A

norma] prior with mean zero and diagonal covariance matrix P will be assumed
for the bfas vector b, P = diag (P ?, a =1, M. The estimation problem to

be considered is to minimize,




- [ .= -

N 3H _ 2 _
LA (zu(ti)’ha({i)-sub) R7,(ty) + b'P7'b (7)

1

with respect to X., i = 1, N and b. Differentiating (7) with respect to ?}
and b results in the nonlinear normal equations :

31

z W (x R (t )z (t;)-h (xi) -S b) 0 1= 1,N (8)
N oL . -

'z] z] S'R (t )(z (t )-h (x )- Sab) -P'b=0 (9)
1=} a=

where ;i is the estimate of X and b is the estimate of b. 1In (8) HG(E})

]
°"c(ti)

is the derivative, In order to solve the normal equations, thev

x
1
are linearized about a guess trajectory, x (S? Let X (s) y 1 =1, Nand b(s)
satisfy (8), i.e.,
Mo T () (s) (s)
E] H (X.i )Ru (ti).(za(t'i)-ha(x‘l )-Sab )=0 i=1,N (]0)

as=

If (8) is linearized about xi(s) and b(s), we obtain

(s)y .. (s)
(x4-x,**') A1 ; N+](b -b*+*7) ()
where
A, = Jg H, (x (S))R°](t JH_(x (s)) (12)
LA a i et
ar.
3M :
T - To-1 (s)
Ay N1 uzlsa R, (tgH (x*77) (13)
Aj is 3 X 3 and Ay y,q is 3 X 3. Linearizing the second normal equation, (9),
about x; (s) and solving for b gives the result,

13
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b - b( ). (P '+ E L Su Ru (ti)sﬁ-‘z Ai’N+]Ai
§=1 as) =1

-1
A et

N 3M

[{51051 s TRV (8, (2, ()0 (g 515 b0
3

e Y s RS )b(s) (14)

i=1 o=1 * © @

(11) and (14) for X; - x(s) and b - b(s) are the basic equations for traject-
ory estimation. Thd solution to the normal equations are obtained by suc-
cessive relinearization and solution of (8) and (9).

2. APPLICATION OF RIDGE REGRESSION. Although there are no convergence
problems in solving the normal equations iteratively for the N-station radar
case, another problem which is fairly common in the solution of linear least
squares problem occurs quite frequently in trajectory estimation. VYery

often, the estimate of the bias vector, b, converges to a solution which
several of the components are too large. Sometimes the bias solution is
obviously erroneous. One obviously erroneous case which frequently arises
is that the elevation bias components will all be large and of the same sign
This problem of the estimated bias vector being too long is usually attri-
buted to multicollinearity among the predictor variables in the linear least
squares. The problem in the linear estimation case is often successfully
treated by some method of biased estimation. This problem has not been prop-
eriy recognized or successfully treated when it arises in trajectory esti-
mation. Although the existence of these erroneous bias estimates have been
recognized in trajectory estimation, the source of the difficulty was not
properly identified. Some workers in trajectory estimation have stated that
the existence of the problem demonstrated the need to specify a prior distri-
bution in order to “tie down" or statistically constrain the bias estimates
Hence, the reason we have included the prior in (7). It does not take much
experience in using these priors for radar trajectory estimation to reali:e
that the problem of inflated bias estimates is usually as much present with
as without the prior. There are no rules for choosing 2 good prior. Ve at

first attempted to treat this problem by introducing a ridge parameter A.
Instead of minimizing (7), we would minimize

N

3M _ 2 1 i
151 GE] (za(ti)-ha(xi)-sqb) Ru (t1) + (1+A)bP L (15)

Minimizaticn of (15) merely introduces a factor of (1 + 1) in (14) wherever

P" appears. We denote the ridge solution as B(A). The ridge solution re-
duces to

6(x) - b(o) = -r(q+ap~ 1) TP Tb(0) (16)
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R Tp-1 LI
e L K R (7)

3. CHOOSING THE RIDGE PARAMETER-THE RIDGE TRACE. How should the ridge

_parameter A be chosen? The graphical ridge trace method proposed by Hoer)

and Kennard [1] is a standard method for choosing A. Consider the following
example from KSMR data. We have three radars, R122, R123, and R395 tracking
a level flying target flying at about 30000 ft. The graph of Figure 1 shows
the relative geonetry of the target trajectory and radars. The diagonal ele-
ments of the prior covariance matrix used in this example were Py; = Py, =

- 2 -
P27 = 1 (Range bias elements), Poy = P33 = (]/R 122), Pgg = Pgg = (]/R 12%),
and Pgg = Pgg = (]/ﬁ 395), where Rj is the average range from the j-t-h radar

to the trajectory. Figure 2 is a ridge trare for this example. Note A =

-1 corresponds to the least squares solution. Ve quickly learn two things
by examination of this ridge trace. One, the range bias estimates do not
stabilize from which we conclude that a ridge parameter should not be used
on the range bias elements. Two, we would also want to conclude from the
ridge trace that there is no benefit to be derived from the use of a prior
on any of the range bias terms. Note that stability of the estimates occurs
near the least squares solution which corresponds to x = -1. The Bayesian
solution with the prior specified which corresponds to » = 0 is not plotted
on the graph. This solution has the bias estimates,

R122 R123 R395
Range (ft) 27 23 -20
Azimuth (mr) -.02 -.06 g2
Elevation (mr) .09 -.06 -.05

These estimates are not in the stability region of the ridge trace. Figure
3 is a ridge trace for this same example but without a prior on the range
bias terms. The range biases are now only indirectly affected, i.e., through
the angle bias estimate, by the ridge parameter ». The value A = -.99 ap-
pears to be a good choice of the ridge parameter. The following table con-
fimns that large errors are present in the least squares bias estimates and
that the ridge estimates with » = -.99 provides a much better solution. The
optics solution is derived from the azimuth and elevation measurements from
several optical tracking cameras. The camera measurements are inherently
much more precise than the radar measurements;, hence, we often use an opti-
cally derived solution as a standard against which we compare radar perform-
ance.
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R122-R  R123-R  R29S-R  RI22-A RI23-A  R395-A RI22-E  RI23-E  PIS5-E

Optics 157.3  152.9  80.3  .0sx10°3 .02x10°3 Loox10"d 1mxi0”? -.oaxn? ..osxret?
é Ridge (1s-.99) 151.8  148.2  72.0 0 -.06x10°3 .o9x107% .12xi07d - .o9x10°3
' least squares 118.3 114.8  63.7 .1isxi0”3.0tex1073. 14801072, 73701073

-.07x10°3
-.9a7x1073- 53801073

Even though we believe that the ridge solution provides much better
trajectory and bias estimates from an H-station radar solution than does
the least squares solution, we have tried and are still trying to develop
a practical method of using ridge regression in trajectory data reduction.
The graphical ridge trace method of Hoerl and Kennard for choosing A is
unsatisfactory for trajectory data reduction. The quick turnaround time
required by range users for trajectory data products makes the ridae trace
method, which requires human intervention, impractical for routine use.

An automatic method for choosing a good value of A is required in order
that the ridge method be practical for trajectory data reduction.

M ta L

L had L} e

4. CHOOSING THE RIDGE PARAMETER-MINIMIZING THE MEAN SQUARE ERROR.
One automatic method for choosing ridge parameters is an iterative method
proposed by Hoerl and Kennard [2%. This method is developed for choosing
the ridge parameter vector in a generalized ridge regression problem. For
the generalized ridge regression in the radar bias estimation application,
we want to choose a parameter vector A having components Ay i=1, 2M.

Thus, we will have a separate ridge parameter for each of the angle biases
but none for the range bias terms. Suppose we arrange the order of the
biases so that the angle bias~s appear in the first 24 positions of b and
the range biases io the last M positions of b. We partition the bias esti-

mation equation, QB = U as

AT
o, R b;’ [u
R er er Uy (18)

In the above we have repla i i i
difforent st ioir e, Placed the matrix Q defined in (17) by the slightly

- T,-1
Q= I ISRt - T .
f:] a=1 a a ( ‘.) a i=) A],N+]A] SN+1 (]9}

9
N 3M N |
L
Note that we have abandoned the use of priors in the definition of Q

Suppose we transform the bias vector b as b

= T& where T is orthogonal,
We can elimirate b from (18) obtaining, ’

19
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b, = Q. (U -RTE) (20)
and
T (Q -R'Q;'RT8 = T (u,-RTQ; 'y, ) . (21)

we choose T so that

T (G-RTQ.'RIT = | (22)
vhere ' = diag (Y‘). Then we have

ra = T1(U,-R'Q "u,) (23)
We now form the generalized ridge regression as
(r+D(\))(B(2)-5(0)) = -D()A10), | (20)

where D(1) = diag (xi) and B(o) is the least squares solution.

The iterative method of Hoerl and Kennard attempts to choose the A to mini-
mize the mean square error in g8()1). Thus, we want to minimize

ELB(A)-8)T(B(x)-£)] (25)

where B is the true parameter value. Minimizing (25) results in the choice of
the optimal a as

:
s (26)
Moo= 8y

Since the true values, By, are unknown, (26) cannot be implemented exactly.

Hoerl and Kennards approximate implementation of (25) uses the iteration,

kel . (1736 )2 (27)
where 8(K) is obtained from (24) as
8{K= v 8. o)/ {F) (28)
with 8{°) « 5. (o).

Hemmerle [3] has shown that a closed form solution of this iterative scheme
is easily obtained. Hemmerle shows that the iteration converges to e, for

0 < (1/Yiéi2(0)) 2 1/4 where

20
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(1-2e0) - Nde

0
2eo

e, (29)

. =2 > (K} '
and e, = ]/YiB i(o). For e, > 1/4, B; —» 0.

For our three radar example applications, we obtain the following data
for the application of the above method.

S TLHETIVRETT R T

-~ -’ 2
ba(O) B'i (0) Y; ji_Bj (o) Ba

ex1073 - 43181174101 4.1857985x10'0  78.04

.42616219%107°

7371073 -.s5495032ax10™%  5.7866501x10'0 174.73  -.s4638011x107%
E .058x1073  .14776931x1073  5.8775591%10'0 1283.41  .14554624x1073
f -.9470107% -.12048667x107>  8.3670572x10% 121.46  -.11947337x1073
E 48x10°3 -17659027x10°  8.3156874x107  2.59 0 4
E -.538X10°3 -.13022000%10°2  1.2606770X107  21.37  -.1237882X10°2 '
E

where g, is the limit of the iterative scheme. 3

This method is clearly inadequate for dealing with this example, since the
bias vector has been shrunken only a very small amount whercas a considerable
amount of shrinking is nccessary in order that the estimated bias agree reason-
ably well with the biases calculated from the optics solution. The diffi-
culty arises from those least squares bias estimates which are far from their
true values. When the true values are replaced by these estimated values in
the Hoerl and Kennard method, the iteration converges to the wrong values
1 which are quite near to the least squares estimates. We have not been able to
3 find an automatic method for choosing ridge parameters which works well for any
of our examples.

PR SN Y T

5. APPLICATION OF PRINCIPAL COMPONENTS REGRESSION. In absence of a method é
for choosing ridge parameters we have recently begun to work with principal com- 3
ponent regression as an alternative to the use of ridge regression for shrink- 3
ing the erroneous least squares solution. We have had a fair amount of success 1
with this method on several examples. 1In the principal components regression we !
set 8, = 0 for i = 2M-r, 2M where r is the smallest integer for which §
2M :
L Y : _ .
izoM-p 1 072 (30) i

M
I Y, .
i=1 ! 1
y
: *!
- N ;‘
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We are assuming in {30) that the eigenvalues, Y haye been ordered from
as a cutoff for the eignvalues in (30)

largest to smallest.

is arbitrary, but we have found it to work well in several examples. for the
example application described above, the principal component estimator sets
Bg = 8¢ = 0, corresponding to the two smallest -eignvalues. The results of

the principal components estimator for this example is compared below with
optics, least squares, and ridge regression.

The ‘use of 10°

2

LA

.' f
10 17 Ao p - 0 |

R122-R  R123-R  R39S-R  RI22-A Rlz2-A R295-A R1Z2e-€ RYZ3-T RIGE-E
Optics 157.3 52,9 80.3  .osmot3 Loana? Loexiotd awmod -eexiotd -esno”?
Ridge (2+-.36) 131.8  122.9  72.0 0 -.cex073 Losx107 a2niotd -oomed -omno”d
least squires N8.3 a8 637 .uexo’d  Losexio”d 1asngd -7amaes? -lsamaod -ssance™
Principal cura=3 I | -3 -3 -3
components  147.9  144.3  69.4 0 -.085%1073 05007 1231073 -.ogsx10” -.067x10
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The principal component method has been criticized as being too restrict-
ive. Marquardt has suggested that a fractional rank procedure be used instead )
of the principal components integral rank procedure. The fractional rank esti-
mator takes a linear combination of principal components estimators,

T

~

Bf = Cér + (]'C)é

<

mpr 05 € (31)

where ér is the principal components estimator of rank r. The difficulty with

the fractional rank procedure is in the choice of the parameter, ¢. Marquardt
[4) suggests using a graphical method like a ridge trace where each component

of the vector g, is plotted against the fractional rank, f = cr + (1-c)(r+1).

Another procedure, suggested by Hocking, Speed, and Lynn [5], for choosing ¢
is to minimize the mean square estimation error. This method is implemented
in a way similar to the iterative method of Hoerl and Kennard for choosing

the generalized ridge parameters and suffers the same difficulties in appli-
cation.

6. CONCLUSIONS. It has been demonstrated by simulation studies [6) :
that ridge regression of fers potentially a better estimator than the princi- 4
pal component technique, but that a better estimator of the ridge parameter
is necessary before that potential can be realized. 1 definitely believe
that this conclusion is correct for our trajectory estimation applications.
I also feel that a similar conclusion could be demonstrated for the fract-
ional rank procedure. Ve are unable to implement these potentially better
methods in a routine trajectory data reduction because we are presently
unable to develop a good estimator for the parameters in either method.
We are greatly in need of soune fresh ideas for choosing the parameters in
these biased estimation methods.
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AN EIGHT VARIABLE COMPOSITE DESIGN FOR
FITTING A SECOND ORDER RESPONSE SURFACE
Carl B. Bates
US Army Concepts Analysis Agency
Bethesdq, Maryland 20014

ABSTRACT, An electronic warfare study has been initiated at the
Concepts Analysis Agency. The study is to provide justification for
procurement and force structuring decisions concerning new electronic
warfare/signal intelligence (EW/SIGINT) systems. A communications
model, Communications Electronics Warfare Combat Simulation Model
(COMMEL 11.5), will be used to investigate the effectiveness of US EW/
SIGINT systems against enemy command, c¢ontrol, and communications (C3)

systems. COMMEL 1[.5 is estimated to require four hours' running time

to simulate an eight-hour battle. Eight model input variables having 6,
6, 4, 4, 4, 3, 2, and 2 levels, respectively, werz selected for the in-
vestigation. The objective is to fit a second ovrder response surface

using as small & number of computer runs as possible. A 1/4 x 23 frac-
tional factorial desiyn is augmented with the addition of axial points.

The resulting variation of a central composite design contains 80 design

;
g

points. The experimental design is presented and aiscussed.

1. INTRODUCTION. The Concepts Analysis Agency has been tasked to

;
:
:
;
:
,
j
:
T
!
4

analyze the relative contribution of US electronic warfare systems to

the outcome of ground combat. A wide variety of new electronic warfare/

- FHECEDING PAGE BLAMK-NOT FILMD



signal intelligence (EW/SIGINT) and weapon systems has been introduced

for the post-1980 timeframe. Recent assessments of US and Soviet come
mand, control, and communications (C3) show the need for improving the

quantified analysis of EW assets to counter threat c3. An analytical

N Wt B . e "
o . N b f1] SR A F
pRE T T L St ;
.

basis is needed to provide justification for procurement and force

-
£
:
i
ﬁ_
E_
£
!
E

structuring decisions with respect to EW/SIGINT systems. The analysis
should provide detail sufficient to assess the potential of selected

electronic countermeasures (ECM), electronic warfare support measures

1 s a1 N

A (ESM), and tactical SIGINT systems.

3 To accomplish the task, the Concepts Analysis Agency initiated the
Force Electronic Warfare/Tactical SIGINT (FEWTS) Study. The purpose of
the study is to analyze the relative contribution to combat potential‘of
the denial, destruction, and exploitation of threat ¢3 through the

application of US EW/tactical SIGINT means.

2. PROBLEM DESCRIPTION. An enhanced version of the Communications

Electronic Warfare Combat Simulation Model (COMMEL I11.5) was selected
for use in the study. COMMELL 11.5 is a fully computerized, dynamic,
two-sided, division level ground cowbat model. It will be used to in-
vestigate the effectiveness of US EW/SIGINT s stems daygdainst enemy ¢3 1
systems. The model permits detailed observation of commupication events i
in a combat environment, and provides a tool for measuring, in terms of

combat outcome, the merit of selected EW/tactical SIGINT capabilities

against a threat.
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tight model input variables were selected for the investigation.
The variables represent equipments and operating characteristics. The
number of levels selected for the eight variables ranged from two to
six. The eight variables and their levels are given in Table 1. The

ful? 62 x 43 x 3 x 22 design has over 27,000 variable level combinations.

Table 1. Design Variables

variable . Levels
Xy - TACJAM 0,1,2,3,6,9
X, - TLQ 17/A 0,1,2,3,6,9
X3 - QUICK FIX 0,1, 3,6
Xy - TRLBLZR 0, 1, 2,3
Xg = CRIT NODES 1,2, 3,4
Xg - JAM vs L/K 1, 2,3
X7 = E/W EMPL CON 1, 2
xg - ARTLY EMPL CON 1, 2

Nine tentative measures of effectiveness (MOL) were identified.
They consisted of Red and Blue materiel and personnel losses and forward
edge of the battle area (FEBA) loss. All nine MOE u~: continuous vari-
ables. The study members desired o second order res)unse surface for

each of the nine MOL in terms of Lhe eiyht mode' inpu. variables. The

second order model,




R

y =By +Byxy + Byxa + Byxs + Byxy +Bgxg + Bgxg + Byxy +Byxg

2 . - 2 2 2
+By1xs + Bopxd + By + Byaxs +Besxs + Bgoxe

- I S YO

+Biaxixg + Buaxxg + Bigxyxg + -oe +Byyxixy +Brgxixg

prey

*Basxgxy +Boaxpxg + -+ +Bapxpxy *+Bagxoxe

+Be1%6%7 * BegXeXg

*Brgxrgs

. A

has 43 terms (8 linear, 6 quadratic, 28 cross-products, and the inter-

cept termn). The eight independent variables (x‘'s) represent the eight

COMMEL I1.5 model input variables and the dependent variable (y) denotes
a particular COMMEL 11.5 model output variable, MOE. -
3. BACKGROUND. Box and Wilson (1951) introduced the concept of
composite designs; Box and Hunter (1957) introduced the concept of ro-
tatability; and Box and Draper (1959) developed criteria for selecting
response surface designs. Hill and Hunter (1965) and Mead and Pike
(1975) give reviews of the developments of response surface methodology.
More readily available sources on response surface methodology can be
found in Cochran and Cox (1957), Davies (1960), Myers (1971), and Ander-
son and McLean (1974).

Composite designs are full or fractinnal 2 factoricl designs auy-

mented with additional points which permit estimation of Lhe guadratic




coefficients of a second order surface. The augmentation consists of 2k

plus one (or more) center points as illustrated in Table 2. Therefore,

the composite design consists of (2K + 2k + 1) design'points.

Table 2. 2k + 1 Augmentation

Xl X2 X3 s xk

-(¥ 0

0

+x 0 0 ...
-X 0
0

0

0
0 N
0 +a 0
0 0 -« ... O
0 0 +a ... 0
0 0 0 ... =
0 0 0 ... +¥

0 0 0 ... ©

I[f k=3 and the 23 coded x-values are +l and -1, t:e design matrix

For a central composite design is as shown in Table 3 and illustrated in

Figure 1.

E
3
1
7
3
3
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Table 3. Three Variable Central Composite Design Matrix

Xl XZ X3
-1 -1 -l
-1 -1 1
-1 1 -l
11 23 factorial
1 -1 -1
1 -1 1
1 1 -1
1 1 1
-0 0 0
+a 0 0
0 -a 0 2x3 axial points
0 4+0r 0
0 0 -o
0 0 +a
0 0 0 <+—— center point

- Axial

Factorial

|
—®
I
|
!

Figure 1. Central Composite Design
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The literature on central composite designs contains discussions on
the determination of @ to yield orthogonal designs. However, no infor-
mation was found applicable to the above described problem in which the
x-values are prescribed and fixed. The following section discusses the
attempts to develop the eight variable composite design.

4, CANDIDATE DESIGNS

a. Design A. A “"Base Case" situation was defined early in the
study planning phase. The Base Case combination of the levels of the

eight variables is shown by the circled values in Table 4.

Table 4. Base Case

Xl X2 X3 X4 Xs X6 X] X8
0 0 0 0 1 1 @ )
1 1 1 ©) @ ® 2 2
©) 2 3 3
3 4

m@m
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First, a fractional factorial design was developed. The lowest and
the highest values of each of the eight variables were considered as the

"low" and "high" values of a 28 factorial. A resolution V 28-2 frac-

T Y T T TSR Y

tional factorial design was developed using I = ABCEG = ABDFH = CDEFGH
as the defining contrast. This gave 64 design points. The resolution V
design pernits fitting the 8 linear terms and the 28 cross-product
terms. Table 5 repeats the Base Case values given in Table 4 and illus-
trates the high and low values used in the fractional factorial. Aug-
mentation of the fractional factorial then consisted of using "inside"
values as the axial points. This gave the 16 design points shown in the
lower portion of Table 5, Note that for X1{» X3, X3, and xg, Base Case
values were treated as center points, but Xa and Xg were balanced over
the two inside values, as were X7 and xg. This gave a total of 80 de-

sign points. The composite design matrix A, however, was singular.
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b. Design B. For the second attempt to develop a composite de-

sign, the same fractional factorial design was retained, but the 16 auy-

mentation points were changed. The inside values for all variables ex-

cept xo were balanced over the 16 design points. Variable xg was set at

its Base Case value (center point). The augmentation part of the design

is shown in the lower portion of Table 6. This composite design matrix
was also singular.

c. Design C.

torial design, but the high and low values were changed.

The third attempt involved the same fractional fac-

This time two
adjacent inside values were used as the high and low values. One of the
adjacent values was the Base Case value (center point). The high and

low values used are shown in the center portion of Table 7. For vari-
able Xg, which has only one inside value, one outside value (3) was
used.

For the augmentation portion of the composite design, outside val-
ues were used as the axial points for x1 through x4. The next two in-
side values (1 and 6) were used as another pair of axial points for
variables X, and x, (points 13 and 14, and points 15 and 16). All other

variables were held fixed at their center points. Variables x7 and xy

were not varied, all 16 points were held fixed ab their center points.
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R Design matrix C was nonsingular; its rank was 43. Consequently,
the full 43-temm second order response surface model given above in the
second section can be fitted. To date, other nonsingular design mat-
rices have not been developed. Theretore, the design matrix C has not
been compared against other nonsingular design matriced. The determi-
nant of {C'C) was evaluated, however, and |[C'C| = (3.94) x 1048, Also,
the variances of the 43 regression coefficients were obtained and are
tablualted in Table 8. The variance of by is 126.2. The variances of
the regression coefficients of the 8 linear terms range from 1.9 to
16.4; the variances of the regression coefficients of the 6 squared

terms range from 0.002 to 0.456. The variances of the regression coef-

ficients of the cross-product terms range from 0.051 to 0.512.

L
¢
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Table 8. Variances of Regression Coefficients

Regression Regression Regression

Coefficient Variance |Coefficient ‘ariance |Coefficient Variance
b, 125,200 by, 0.194 bas 0.053
by 5.172 by3 0.512 bsg 0.057
b, 5.172 bia 0.212 bs; 0.057
by 1.900 bys 0.212 bg 0.057
by 10. 350 bye 0.215 by 0.218 |
b 9,856 by - 0.220 b 0.230 ;
bg 16.400 by 0.220 |- byy 0.234 |
b, 6.838 bps 0.051 by 0.234--
bg 6.838 bya 0.220 bsg 0.220
byq 0.002 bys, 0.202 b 0.225 :
by, 0,002 bye 0.215 bgg 0.225 :
b33 0.008 b27 0.220 bb7 0.239 3
by 0.382 bog 0.220 beg 0.239 ;
bg s, 0.173 D34 0.023 by 0.239 i
bbb 0.456 %
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5. CONCLUSIONS. The procedure employed above can be applied to
develop second order response surface designs for situations in which
the variable levels are prescribed and fixed. However, a systematic
method for development of the composite design is needed. The designs
attempted suggest that inside variable values should be used in the fac-
torial or fractional factorial portion of the composite design and that
the axial points should lie on or outside the k-dimensional cube of the

factorial.
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AN APPLICATION OF ORDER STATISTICS TO TIME-SEQUENCE LOGIC

William E. Baker and Malcolm S. Taylor
Probability and Statistics Branch

US Army Ballistic Rec<earch Laboratory
Aberdeen Proving Jro.-t T, Maryland

ABSTRACT. If Xl, XZ, oo xn are independent, identically-distributed

random variables, then Yl < Y2 €...< Yo» where the Yi's are the Xi's

rearranged in order of increasing magnitudes, are defined to be the

order statistics corrcsponding to the original random sample. Order
statistics have becn applied to the solution of a problem involving the
determination of time windows for firing impulses in a fuzing system. A
computer program has been written which provides the probability of a
warhead fuzing as a function of the parameters which characterize the
detonators. Conversely, given a required probability of fuzing, the
program will determine the necessary detonator characteristics. Although
motivated by this specific problem, the work is general in nature and

should have additional applications in the armament research and develop-
ment community.

1, INTRODUCTION. Let Xir X5p -ey xn be independent, identically-
distributed random variables. Then Yl < Y2 <... <€ Yn' where the Yi's

are the X,'s rearranged in order of increasing magnitudec, are defined

to be the'order statistics corresponding to the original random sample.
Order statistics find immediate application in the design and evaluation
of logical structures which make decisions based on the relative values
assumed by a set of n random variables. One particularly interesting
application involves the determination of time windows for firing impulses
in a fuzing system. This is the problem which motivated the work on

which we are reporting. However, the work is general in nature and may

prove useful for other applications in the armament research and development
community.

2. STATEMENT OF THE PROBLEM. 1In the particular problem which we
addressed, a fuze ccntains N detonators, K of which must function within
a specific time span. Furthermore, the second detonator (which functions
at time Y2) partitions the time span into two subintervals. The first

subinterval [Yz' 61, Y2] is examined tn determine if the first detonator
functioned within that time segment, and the second subinterval [YZ’ Y

2
+ 62] is monitored to count the number of additional detonators activated

during that period of time. 1If, within the time interval [Y2 - 61, Y2 + 6
K detonators have functioned, then the command to fire will be initiated;

2].
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otherwise, it will not, The times to function for the detonators are
random variables and, as such, can be characterized by a cumulative
distribution function F. Assuming that the time to function of each
detonator is identically distributed, then the problem consists of
cexpressing the probability of fuzing as a function of K, N, 61, 62, and F,

3. SOLUTION. Let Xi be the time to function of detonator i in
its operating environment. Then X10 X5 oees Xy are independent, identically-
distributed random variables; and we can define Yy Yz, cees Yy to be
the order statistics corresponding to the X;'s. For our problem, if
Y2 - Y1 < 61, we are interested in the probability that YK - Y, < 62; however,
ify,-y> 61, ve nced to determine the probability that Yee1 - Y2 < S,
assuming K + 1 € N, Therefore, we nced to cvaluate

Pr {warhcad fuzing} = Pr {Y, - ¥, € 6,} Pr {Y, - Y, <8, | Y, - ¥, <§,)
#Pro{Yy Y, > 8 PrdY, - ¥, €8, | Y, -, >8], (1)
Applying the definition of conditional probability we obtain

Pr {warhead fuzing} = Pr {Y, - Y, € 61} Pr {YK - ¥, <8,and ¥, - Y, < 61}

—————

Pr {Yz -Y, < 61}
v+ Priy, - Y, > 6} Pr tﬁf‘l =Yy, <6§,and Y, - Y, >4) ) 2)
. Pr{Y, - Y, >§,}
which upon simplifying yields
sino) = {y. - -
Pr {warhead fuzing} = Pr (Yy - Y, S8, and ¥, - Y, €8]
+ Pr {YK+1 - Y, S 6, and Y, - Y, > 6,5 (3)
Defining
a
F(a) = [ f(x)dx, 4

-0

we can proceed to evaluate the first term on the right-hand side of
fquation 3. As shown in Appendix A we can obtain the joint probability
density function of the 1st, 2nd, and Kth order statistics,
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f(ylo )'2' YK) = mT-Nl—l(N_-m f(yl) f(y2) [F(YK) - F(Yz)]x.s
£y 1 - Pyt C®

If we let u = Y = Yo V2 ¥y - Yy and w = Yy then we can rewrite Equation S,

£(u,v,w) = Tifij‘(ﬁ”i?‘ £(w) £(v+w) [Flusvew) - Flv+w)]*~3
e fluevew) [1 - F(u+v+w)]N'x, (6)

and the desired probability is

+ 61 62
f f f f(u,v,w) du dv dw (7N

which is equal to

8
2 [Flusvew) - F(v+w)]K‘3

5
1
T ! £) [ ° £lvew) [

o f(u+rvew) {1 - F(u+v+w)]N‘K du dv dw . (8)

In an analogous manncer we can obtain the joint probability density
function of the 1lst, 2nd, and K+1lst order statistics; and, letting
Us=Yye,q =Y V3Yy- Y and w = Y, We can obtain the necessary

probability for the second term on the right-hand side of Fquation 3,
That probability is equal to

$0D

)
f(w) £ f(v+w) IOZ[F(u4v+w) - F(vm)],("2
1

(& 2)1(N K-1)T I

o fusvew) {1 - F(u+v~*\ur)]N'K'1 du dv dw. (9)

The probability of fuzing is then just the sum of Fquation 8 and Equa-
tion 9,

Appendix B contains a computer program which cvaluates these inte-
grals. In its current form it assumecs that the distribution of the
times to function of the dectonators is normal; however, it can be ecasily
modified to change this distribution. The program requires as input N,
K, 61, 62, and o (standard deviation of the assumed distribution).
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4. RESULTS. For the problem we addressed, the value for o was

specified to be 10'5 seconds. Figure 1 presents the results of changing
8§, and &, for a fuzing system in which K is equal to N-1. In Figure 2 S
v% consiaered a fuze with eight detonators; and, keeping o equal to 10~

we varied K as well as §, and §,. Of course, given any four of the

five input variables (o, K, N, 61, and 62), we can obtain a specific

probability of warhead fuzing by parametrically varying the remaining
variable.
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APPENDIX A. As shown in Reference 1 we can obtain the joint probability
density function for Yys Yz, and YK. Let Xl. Xgp <vny X, be a random

sanple from & population with density f(x) = F'(x); and let Yir You oves Yo

be the corresponding order statistics. Then the probability density
function for the rth order statistic may be derived by considering the
following configuration:

r-l n n-r

X

T 1 PPAWR N SR T A

X+Ax

That is, Xi < x for r-1 of the Xgr X < Xi < x + Ax for one X5 and
Xi > x + Ax for the remaining n-r of the Xi‘ The number of ways this

combination of events can occur is

r-1 1 n-r ’

' and each such way has probability
' F) ™! (Flxetx) - B! (1 - Fxean))™ T,

Therefore, we have

n!

Pr {x < Y < x + Ax)} = = T

e (FOOITY [Fixedx) - FO) (1 - Flxsax) )™ T + 0(ax?) (A1)

where O(sz) means tcrms of order (Ax)2 and includes the probability ';
of realizations of x < Y € x + Ax in which more than one Xy is in E |

(x, x + 6x). Dividing both sides of Equation Al by Ax and then letting
Ax + 0, we obtain

e~

fy 00 = DTSt FeT e n-Fm)" T (A2)

In a similar manner we can derive the joint probability density
function of Y, and Y_:




r-l . §.r-l n-s

X x+AX v ly+ay

and through an analogous argument we obtain

n! r-1
fyr,ys(x.y) = TG DTG [F(x))" ""£(x)

c F) - FOISTT £ 1 - Fo s,

(A3)

Finally, for the joint probability density function of Yr' Ys' and Yt:

T-~1 s-r-1 t-s-1 n-t

X x+4x Y] &+Ay 2l k+Az
and

nl! -1
fyr,vs,yt(x'y'z) T TDTG-r-DI(t-s-1) T (n-t)1 [FO))F £ (x)

e E-P)ISTTY £y (F()-F)1t 7Y £(2) 1-F(2) )™t

(A4)
For the case r=1, s=2, and t=k, we obtain
n!
le‘YZ’Yk(x'y’Z) T K Th-iIOT f(x) £(y)
- [F(EMIS £ n-F@)™ k. (AS)
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APPENDIX B. We are presenting here the computer program which evaluates
the desired probability function. As noted in the program comments, we have
assumed that the times to function of the detonators are normally dis-

1 tributed with mean zero and variance 02. However, with just a few changes
3 to the subroutines, a different distribution may be assumed. To do

this, all cards containing "NORMAL" in columns 74 through 79 must be
replaced by others with the appropriate probability density function

or cumulative distribution function.
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[a s NaXal

PRUGHAM QETUN (INPUT,OUTHUT, TAPESRINSUT TAPEGSOUTPUT)

T I T IS IR R ALY R ALY LR LR R LR R LA L L L L2 T 2

THIS PROGRAM OETERMINES THE PROBABILITY THAT K OUT OF N
OETONATORS wILL FUNCTION WwITWIN A GIVEN TIMESPAN, K MUST

3€ GREATER THAN OR COGUAL TO 3¢ AND K myST 8E LESS THAN QR
€AUAL TO No THE DISTRIBUTION OF THEIR FUNCTIONING IS ASSUNED
TO BE GAUSSIAN w[Tw- A MEAN EGUAL TO 0.0 ANO A STaNDARD
DEVIATION EQUAL TO SIGMA, THE SOLUTION IS DERIVED THROUGM
THE USE OF OWROER STATISTICS AND IS OBTAINED BY EVALUATING

A TRIPLE INTEGRAL.

IF THE NUMBER OF DETONATORS 1S GREATER TnAN THIRTY,

THEN THME TOLERANCE LIMITS OF THE INTEGRALS mMyUST BE REDEFINED,
THAT [Se THE VARJABLE 'ERRQOR! IN THE MAIN RQUTINE AND THE
VARIABLES *TOLXeTOLY® IN SUBRQUTINE 'DIST* SmOULD BE ADJUSTED.
wilT THE TOLERANCE LIMITS CURRENTLY IN THE PROGRAM,

THE RESULTING PROBARILLITIES ARE CORRECT fO TwQ DECIMAL PLACES,

INPUT 1S AS FOLLOWS ...,
N ceeessrastenavesese NUMIER OF DETQONATQRS
K veeevesnsescecsccssce MNUMABER OF OETONATORS TO FUNCTION
SIGMA sesenseveseve STANDARD DEVIATION OF DISTRIBUTION
OELT) esesesesccaase TIMESPAN {FIRST TO SECOND NETGNATORS)
OELT2 ceccevcessess TIMESPAN (SECOND TO LAST OETONATORS)

REAL NFACT +K2FACTKIFACT ¢NKFACTNKLIFACT
DIMENSION 1ERR (&)

COMMOMN /COML1/ NeK+sSIGMALDELTY,DELT2
COMMON /COM2/ PT.w
COMMON /COMSL/ INO

EXTERNAL OIST
NATA JERRA /30 (=0)40e2°(=0)/

CALL SYSTEMC (J&,IERR)
CALL SYSTEMC (115, [ERR)
WRITE (4.200)

READ INPYT
INITIALIZE VAR[ABLES

READ (S+100) NiK,SICMADELT1+0€6LT2

IF (K.LTe3 ,OR., X,6T.N) GO TO 1S

1F (N «9Te 30) «RITE (5+500) N

IF (DELTY +G3Te 10°SIGMA) OELT1=10,°51GMaA
1F (DELT2 0T, 10.°51GMA) DELT2m10,°SIGMA
RES130, '
RES2e0,

PI83,1415926536

NN3N/Se6
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acid
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[z XaXz]

nNnnNnon

o0

C
c
c

tF (N E3. 50) NN®2
FRARONR]0,%® (NN}
A--IO.'SIGNA
RAsel0,°SIGMA

EVALUATE TRIPLE INTEGRAL

In0m) .

RES12aSAQUANK (A+B.+ERRORIRUMDIST)
1f (N EQ. X} GO TO0 7

IND =2

RES22SQUANK (A+13+ERROR«RUMDIST)

OETERMINE FACTORIALS

T CONTINUE
NFACTa)
K2FACTs]
KAFACTs]
NKFACTS)
NK]FACTs)
00 10 I3leN
NFACTaNFACTS]
IF (1 JLE. (K=2}) K2FACT=zX2FACTe]
IF (1 JLE. (K=3}) KIFACT=KIFACTe]
IF (! (LE, (N=K)) NKFACT=aNKFACTe]
1f (] LE¢ (N=K=1!) NKIFACTsNK1FACT®l
10 CONTINVE

COMPUTE AND #RITE PUBA3ILITIES

PROB)INFAGCT/ (NKFACTORIFACT) *wES]
PROB2aNFACT/ (NKIFACT*K2FACT *RES2
OROBaPROA] ~PR0B2
WRITE (6e300) NeKeSIGMALOELT]1«DELT2+PRCB]LPROB24+PROY
60 10 §
1S wRITE (6e000) No¢X
STOP

100 FORMAT (21S+3F20,7)

200 FOWNAT (1lwl//)

300 FORMAT (1M +4MN » o[2¢3Xs6MK 8 ,12¢3X,8NSIGMA 3 +F10,7¢3Xe
ANDELT] 3 oF15.8¢3X,8MDELT2 & +F15.8¢3X/1H0
ITHPROBABILITY (1 TrHAOUGH X FUNCTION] 3 «Flo,0671H o
AGHPRUGABILITY (2 THROUGH KXol FUNCTION) = ,FB8.6/1nm

. 22HPROAARILITY (TOTAL) 3 oF25,6/////1)

400 FORYAT (lm s3SHeeece [NVALID VALUE OF N UR K esese,3x,

. «lMN 8 4 [2e3Xsenx 3 L12)

8§00 FORMAT (21H4 ®e%see 4ARNING = N 3 (12,

i SiMe CRECK TRE TOLERANCE LImITS CF THE [NTEGRALS ¢eeed///)
END
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FUNCTION OIST (w)

c oot a®eoS o RBe o w
C
C THIS ROUTINE PRQVIDES THE INTEGHAND FOR THE THIRDO INTEGRAL
c A4S e€LL &S THE LIMITS OF INTEGRATION FOR THE SECONU INTEGRAL.
C
COMMON /COM1/ NoKeSIGMAWDELTYVOELT2
COMMUN /COMZ/ Pliwn
COMMON /CQMa/ IND
c
ERTERNAL F XX FRY
C
sy
NNaN/S 6
IF (N EQ, 50) NN=]lQ
TOLX=210.%® (~NN)
TOLY310e®® (=NN)
PHIWB] o/ (SGRT(2,%P])oSIOMAICEXP (-], %wee2/ (2,05]CmMA®e2)) NORMAL
C
IF (IND L,EQ, 2) GO TO S
00wN=0,
uPsQELT]
GO 10 10
S DOWN3DELT]
UP=2,%0ELTY
IF (DELT1 oLTe 10.°SIGMA} UP310,0SIGMA
c
10 CALL OPBULINT (DOWNsUPsFXX1FXYoTOLXsTOLYcANSSsRUMIRUMY M)
DISTaPr[w®ANS 4
RETURN 1
END
c E
c
o
SURRQUTINE FXX (VeY1sY2,Y3)
c --.---'.-------C..‘-----‘---
Cc
C THIS ROUTINE OROVIDES THE INTEGRAND FQOR THE SECOND INTEZGRAL
C AS MELL AS THE LIMITS OF INTZGRATION FOR THE FIRST INTEGRAL. i
C i
: COMMON /COML/ NyKoSTGHADELT1+DELT2 )
COMMON /COME/ Pl.w 5
PHIVWEL ,/(SQRT(2,9R1)*SIGMA)SEXP (~]1,%(Vew)*®2/(2,2S[GMA®e2)) NQRMAL ';
< ;
vlsPHIVe -
Y2s0, -
v3a0ELT2 »
<ETURN -
gHo i
C !
¢ N
¢ '
?
a4
:
i
,%
3
'i
4
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thw1S AOUTINE PROVIDES THE INTEGHAND FOR THE FIRST INTEULRAL.

COMNON /COML/ NeK+SIGMAIDELT10ELT2
COMMON /COMZ/7 Pl.¥ -
COMMON /COMa/ IND

‘pnxhvvul./(sonrtz.‘Pll'51GnA)OEAP(-l.0(UoVou)002/(2.-Sxenl'oz))

CAPVWEFND ((Vew)/SIGrA}
CAPUVWSFND ((UeVed) /SIGMA)
IF (IND .EQ, 2) GO 10 15

IF (N (EQG, 3) GO TO 2

IF (N EQ, K) GO TO S

IF (K .EQ, 3 GO ‘010
FXV:(CAPJVU-CAPVb)00(K-3)OPnluv-O(l.-CAPuvw)OO(N-K)
G0 T0 25

FAYSPHIUVY

G0 t0 2S
va-(CAPuvv-CAPv-lOO(KoJ)OPquvu
60 T0 25
llYlDNIUVIOGI--CAPUVH)°°|N-Kl

30 T0 25

CONTINVE

IF (N .€Q, (K*1)) GO TOo 20

FXY!(CAPUVI-CAPVUD"(K'Z)‘9ﬂ[UVl’(l.—CAPUJl)"lN-K-l)

60 T0 2%
FXY-(CAPUV!-CAPVU)"(K-e)'PHIUVI

Qe TURN
END

NORMAL
NORMAL
NORMAL

- e )

‘8
.
3
.
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RADAR ERROR SIGNAL IMPROVEMENT

Robert E. Green
Programs Management Office
Instrumentation Directorate
US Army White Sands Missile Range
White Sands Missile Range, New Mexico

ABSTRACT. Monopulse tracking radars are subject to pointing errors
that are induced by target-caused signal fluctuations. These signal fluctu-
ations introduce non-Gaussian noise into the angle tracking servo error
signals of the radar. This paper raises the question of the efficacy of
making corrections for these ermrors based on other radar measurements that
are significantly corrupted by noise. Actual radar error signals are dis-
played along with the results of spectral analysis of the signals. The
spectral analysis confirms the presence of non-Gaussian components in the
error signals.

I. INTRODUCTION. One of the types of devices used at White Sands
Missile Range to keep track of missiles in flight is an instrumentation
radar. These devices transmit a burst of energy which is reflected off
the target and back to the radar. Automatic control devices in the radar
keep the antenna pointed at the target. The measurement of the time inter-
val from burst transmission to echio reception permits the determination of
target range; and the position of the antenna pedestal in azimuth and ele-
vation permit the designation of target position in polar coordinates. The
radars transmit these bursts of energy at rates of 160, 320, or 640 times
per second. The process of tracking a target automaticaly requires that
the device (radar) sense how far it is of f from the target and make the
necessary corrections. The purpose of this paper is tc define a problem
that has been detected in this error sensing circuitry and solicit sugges-
tions for improving radar system performance.

11. ERROR SIGNALS. Instrumentation radars of the type used at White
Sands Missile Range utilize a monopulse feed system to generate the error
signals that are used to direct the tracking mount in azimuth and elevation.
This monopulse feed system uses a quadrangle of four sensors (Figure 1) to
determine the necessary direction to drive the antenna so that the target
is centered in the quadrangle.

A° °B

c° °B

Figure 1. Sensor Quadrangle.
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The directional error is measured by observing the difference of the follow-
ing signal levels:

Azimuth error = (A + C) - (B + D) (1)
Elevation error = (A + B) - (C + D) (2)

These sums and differences are formed at the operating radio frequencies

(5.5 GHz) of the radar. This means that the individual signals from A, B,

C and D are not available for processing. In the radar equipment, these
quantities (1) and (2) are sensed as voltages instead of digital numbers.
These quantities are sensed each time the radar receives an echo. The sig-
nals differenced to form the quantities, (1) and (2) are of almost equal
magnitude. This results in a very weak, low frequency signal, embedded in

a large amount of noise. The radar equipment uses a very narrow band filt-
ering process to extract the signal from the noise. This filtering process
is accomplished in two stages. The data is first processed through a low pass
filter of approximately 10 Hz bandwidth. The filtered signal is then applied
to the servo which typically has a bandwidth of approximately 3 Hz. It is
not possible to significantly reduce the bandwidth of the 10 Hz filter and
maintain the stability of the servomechanism,

The noise in the error signals has two major contributing sources. One
of these is "thermal noise” and is naturally occuring in the environment.
It is assumed to have a Gaussian distribution with zero mean. The other
major noise source is contributed by the response of the radar system to
changes in the reflectivity pattern of the target. The reflectivity pattern
of the target is a very complex function that changes rapidly with changes
in target aspect. This means that signal amplitude can change drastically
between two successive echos from the same target. These rapid signal fluctu-
ations are the origir of the seccnd major noise source.

I1T. AUTOMATIC GAIN CONTROL. The gain of the radar receiver performs
the same function as the volume control on a radio. As the signal gets weak-
er the volume or gain is increased to keep the output at a constant level.

In a radar system, an automatic control system is used to sense the average
received signal level and adjust the receiver gain accordingly. If the sig-
nal level does not change too rapidly, the automatic gain control system main-
tains the receiver gain at the correct level so that the radar system func-
tions normally. If the received signal level changes faster than the auto-
matic gain control can adjust, then the noise 1s introduced into the error
signals. This noise is deterministic in the sense that if the receiver gain
setting and the received signal level are known, then the incorrect value for
the error signal can be predicted, using a known deterministic function. The
previous paragraph indicated that the radar system is designed to respond
only to low frequencies. This would make it appear that high frequencies
would have no effect on the system. It should be noted that the radar is a
sampled data system and that frequencies near the sampling frequency will
appear to be low frequencies due to aliasing.
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IV, ERROR GRADIENT CURVES. The error gradient curve is used to relate
the magnitude of the error to the voltage sensed (Figure 2). This function is
established as a part of the radar system set-up procedure. It is also used
i in the tracking function to sense how far the target is off center. A common
: set-up would be to assign a deviation of one milliradian a value of one volt.
Notice that the curve is linear in the region where the deviation does not ex-
ceed +1 milliradian. This is the region where the radar system would normalily
be expected to operate. In the radar set-up procedure, the deviations shown
in Figure 2 are assigned for the voltages sensed in the azimuth and elevation
error sigral detection circuitry. These values are correct, as long as the
receiver gain is set at the appropriate level for the received signal.
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Figqure 2. Error gradient curve
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The automatic gain control system sets the receiver gain based on the
average value of the last few signals received. When a received signal has
a significantly different amplitude from this average, it has a profound
effect on the error sensing circuitry of the radar system. Figure 3 j1lus-
trates how the error gradient curve appears to the error-sensing circuitry
when the received signal is either significantly stronger or significantly
weaker than the average value over the last few samples. Curve A illustrates
how the error sensor reacts if the received signal is much stronger than ex-
pected. In this case, the voltage sensed for a given angular deviation is
much laraer than that shown in Figure 2. Curve B illustrates how the sensor
reacts if the received signal is much weaker than expected. For this condi-
tion, the voltage sensed for a given angular deviation is much smaller than
shown in Figure 2. Since Figure 2 was used to calibrate the system, these
conditions introduce errors in the sensed angular deviations. 1In actual ex-
perience this type of signal fluctuation occurs frequently in tracking targets
such as missiles and aircraft.
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Figure 3. Mismatched error gradient curves.
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V. SPECTRAL ANALYSIS. The introduction of a large signal fluctuation
into the error sensing circuitry of the radar affects the system for a period
of time. This is due to the action of the filtering process. The introduc-
tion of an impulse into the system lasting only one sample period would at
first appear to be at too high of a frequency to affect the system. 1If the
amplitude of the impulse is very large its affect will be spread over several
samples by system filtering action resuliting in antenna pointing errors.
Figure 4 shows the power spectral density of a radar error signal when the
radar was tracking a spinning missile. Note there is power at low frequencies
near the servo bandwidth of the instrument. Such non-Gaussian noise will
create incorrect responses in the radar angle tracking system. Figure $ shows
similar spectral analysis for a roll stable missile. Notice that the non- -
Gaussian error signals occur much less frequently in this case. This indi-
cates that rapid changes in reflectivity pattern are much less common for non-
spinning missiles. Figure 6 is a recording of radar error signals where large
signal fluctuations were known to occur. The large angle errors resulting
from these signal variations are evident throughout the period shown. The
data presented indicate that the presence of large short-term signal fluctua-
tions do affect the radar angle error signals.

VI. THE PROBLEM OF CORRECTION. The composite of the Gaussian and determ-
inistic noise sources results in a function such as the one shown in Figure 6.
Observe that this data is so noisy that no trend can be discerned by inspec-
tion. The available measurements of received signal level are also very noisy.
In spite of this, it is possible to generate the required set of error gradient
curves. The necessary values can be generated by fixing the radar parameters
and then observing the data over a few hundred samples. The averages of these
samples have the expected characteristics. The individual samples of received
signal Tevel are so corrupted by nofse that the correction of individual error
signal samples may not result in an improved value.

The information presented raises the following questions:

° Wili applying corrections, based on functions derived from
average values, produce a better behaved sequence of error signals?

® Is spectral analysis an adequate method of measuring the
improvement resulting from the correction process?

® How noisy must the measurement of signal level become in
order to make the correction process ineffective?
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Figure 4. Spinning missile error signal power spectral density.
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USE OF THE BILINEAR Z~-TRANSFORM
IN IMPLEMENTING DIGITAL FILTERS

Donald W. Rankin
Army Materiel Test and Evaluation Directorate
US Army White Sands Misaile Range
White Sands Missile Range, NM 88002

ABSTRACT

The Laplace transform is an extremely versatile tool for solving differential
equations. The s-plane transfer function converts the problem in integration
to an algebraic one. But when a control system employs digital filters in an ]
embedded computer, the variables are necessarily discrete, and the problem is i
better stated by means of a difference equation. The operator equivalence
relationships are

Z =1+ aAm=gD

PRRCYROTSY |

and show that the s-plane transfer functions will be quite complicated.

To circumvent this difficulty, we employ the Bilinear Z-tranaform which
has the form

A P 132!
A ° b 1 +C2-1

and maps into what we shall call the r-plane, where the transfer functions are
well behaved. It is a moat useful tool, admirably performing its mission of
simplifying calculations, but seems to be seldom used --- rarely correctly.

This paper re-examines the theory of the Bilinear Z-transform utilizing
two new parameters (essentially the reciprocals of those traditionally used).
It is felt that the method results in considerable simplification and clarifi-
cation.

I. BACKGROUND., During the test of a ballistic missile control system, an

analysis was performed of the digital filtera used in the attitude compensa- :
tion channels. The filters were implemented by cascading two, three or four q

stages of the type
_L.é.___ﬁ_’).xa* 1
) 1+ v27)x ()

This filter is implemented in a digital computer by the following two succes-
8ive steps:

X; = ¢, - Yxq (2)
P, o= ag, * Bx, (3)
63
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Subscripta refer to ircrementa of time; hence the sampling interval is given
by

VTR NS KT e L

tl - t0 = A

X is merely a convenient computational parameter.

In the actual case, only real coefficients were encountered. However, the
treatment which follows can be extended without much difficulty to include the
case of complex coefficienta.

Several shortcomings were found. The proximate cause is easy to state ---
incorrectly computed coefficients and too many stages are examples. The ulti-
pate cause, however, cannot be determined with any certainty. Perhaps it is a
lack of understanding of the principles of digital filters on the part of both
design and test engineers.

The theory of digital filters is the theory of electrical networks. It is g
not surprising, then, that the bulk of the literature on the subject has been b
written by electrical engineers, and is couched in engineering terms. The
frequency domain is the vehicle of thought.

But when a limear control system is operated by an embedded digital
computer, the signal to be sampled often is virtually aperiodic in nature,
exhibiting a frequency spectrum that is quite primitive when compared with
that of even a8 common electrical phenomenon. Under these conditiona, restat-
ing matters in the time domain resulta in worthwhile simplification and
clarification.

Accordingly, the theory is re-investigated, utilizing the terminology of
the time domain., Two variables are identified there, and expressed in unite
of time (e.g., seconds or sampling intervals).

II. THE PROBLEM OF PREQUENCY POLDING.* Nearly everyone has seen in the
movies the spoked wheel which, starting from rest, turna faster and faster
until a speed is reached (the Nyquist frequency) where the apokes appeer to
slow down, eventually (at twice the Nyquist frequency) coming to an apparent
halt. As the actual wheel aspeed continues to increase, the spokes seem to
turn backward, and the phenomenon is repeated in mirror image. In fact, it is
repeated indefinitely, like the images in a barber shop mirror. The frequen-
cies are said to be "folded," the folds occurring at odd multiples of the
Nyquist frequency.

The Nyquist frequency is equal to half the sampling frequency. Thus, if
the movie projector operates at 24 frames per second, the Nyquist frequency is
12 spokes per second. It is convenient for theoretical purposes to express
frequencies in radians per second, rather than in hertz. Por a finite sam-
pling interval of At seconds, then, the radian sampling frequency is 2n/at
and the Nyquist frequency n/4t.

#J. W. Tukey employed the term "alissing."




If the spectrum of a signal to be sampled containa frequencies (of suffi-
cient amplitude to be detected) greater than n/At, frequency folding will
surely occur. Having occurred, it can neither bve detected in nor removed from

E the sample. Necessarily, steps to be taken are limited to preventive ones.
3 Three cases are diacuassed:

L. .
r T g e s
COIEL Ty R

TE

Case 1. It may be possible to decrease At, thereby increasing the
Nyquist frequency until it spans the troublesome frequencies.

Case 2. Unwanted frequencies can be removed by procesaing the signal with
a suitable band pasa filter befors sampling. This will result in a lose of
"power," which perhaps can be partially compensated for in the subsequent
digital filter.

-

el

Case 3. Analysis of the output of the plant (signal) may reveal that it
is aperiodic. The principal frequency thus is zero.

In all three cases, the function (signal) is said to be band limited,
since its frequency spectrum contains no frequencies outside the band defined
by the Nyquist frequency; i.e., -n/4t < w < n/At.

e

Thias paper will treat only band limited functiona. However, this does
not mean that the specter of frequency folding can be ignored, since either a
poor filter design or a faulty feed-bark mechanism can induce periodicity.

I1I. THE BILINEAR TRANSFORMATION. In its most general form, the bilinear 8
tranaformation is given by

Awz + Bw + Cz + D=0 (4)
where A, B, C and T are constants while w and 2z are variables, any of

which might be complex. Avoiding the trivial case A = O, division by A
obviously does not disturd the equality. Simplifying thus, let

. _.C.z..2, .B
¢ A’ AP Y7

Then

ITRIT I T

Wz + YW = az + B (5)

w + ywz™! = g+ gz”!

a + gz~
"Tr%r (6)

It is equally easy to solve for either z or 2~! in terms of w. This
denmonstrates that the inverse of a bilinear tranaformation also is a bilinear )
tranasformation. :
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The operatora 3% , Z=1+4, and 27! =1 -7 submit to algebraic manipula-
tion, so that

a + 827!}
v 1+ Y2©4)x (1)

becomes a useful digitasl filter. The variable , is ANY parameter that can be
sampled in the computer.

As will be seen, the filter provides an approximate solution to the dif-
ferential equation

since

d
2=1+4=exp (dt)
from which

d -1
— = fn 7 = - n 2 = « n - 9
dt e e 9(1 )

Expanding in ascending powers of ¥, then substituting 1 - 2=l 2 ¥, the
infinite series in 2Z~! can be approximated by a rational function in 2=,
The set of Pade approximants is a convenient source. If the degree of numera-
tor and denominator are chosen to be the same, the rational function can be
decomposed into factors, each of which has the form of filter w.

If the variable w is used to define an output/input ratio, then the filter
is of exactly the form encountered during the test.

IV. FILTER CONSTRAINTS. To be realizable, the filter (rational function)
must be bounded. That is, there must be no poles at infinity. Obviously, the
degree of the numerator must not exceed that of the denominator.

For a stable filter, under a conformal mapping into the r-plane (described
later), all poles must be found in the left half-plane. A sufficient condi-

tion seems to be that the real parts of all denominator coefficients be of
like sign.

66

e <

R

ittt

prxperar=ra el SRR
: ’




Ty

TR Y e

Lein

| NI -

T

T R B U W TRE ST

V. DEFINITIO T .

t1 present time
to previous time
at = t, - t;, the sampling interval.

Sometimes referred to as one Real Time Interrupt
(RTI). In the case at hand, At = 0.008192 sec.

¢ or ¢, the input atv ¢, (f - ®igure 1.)
P or Fl the output of the filter at t
Fi/¢i momentary gain of the filter

G steady state gain of the filter

F

G = Lim i
v 1

Por this discusaion, G = i, with no loss of generality.

It is profitable to investigate the reaponse of the filter to unit step
function at t,; i.e.,

o, = © (n < 0)

o = 1 (n > 0)

where n admits only of integral values.
"Mun

'gim Fi a
ism
We shall now defire ]+ the toial impulse of the filter, as
o
[ = f At (Fi - G°i)

which, upon substitution, redutes to

| at % (, - 1) (7
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The partial impulse of the filter is defined as

In = 3t ? (v, - 1) | (8)

When n is small, the ratio ln/l is useful.

When | = 31, that time can be called the half-life of the filter.
It is a measure of the filter’s responsiveness (or sluggishnmess).

When | = 0, there is no net feedback. The filter is a smoothing filter
only (possibly a very good one). It is uselesa for control.

When | > O, there is an excess of ocutput over input, which is availabdble

to the system for control. The amount of this excess defines "total impulse”

in a useful filter.

When | < O, there is excessive "power" loss. The filter allows the

syatem to drift toward inatability.

VI. OSCILLATING FILTERS. Repeating for convenience

X, % =YX (2)

(3)

F‘ - oex, + on

i PP

and continuing to investigate the response to unit step function, it is seen
that

b

“11-Y¢Y2-Y3

Xg = O .
+

- 1 i

X, g
X = V=Y 3
:

X3.1'Y¢Y2 g'
{

:

3

few

In the limit, there will be genersted an infinite aseries which converges to

'£<-1>1=1‘ (9)
i=0 + v

LR B VS YN
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provided |Y| < 1. When O < Y < 1, the series will have terms of alternating
sign. The successive values of xy; will oscillate about some value, as

will the output of the filter. As a general rule, an oscillating filter is
not deairable for control. So much so that an oscillating filter can be
viewed as evidence of poor design.

When - 1 < Y < O, the series for (1 + Y)~! will have terms of like
sign, and the filter will be relatively smooth.

Notice the behavior of X for various real values of Y.
Y € - 1, The successive values of X diverge. The filter is unstable.

1
- 1 <Y <C0. X converges to the value 77y. The filter is atable and
relatively smooth.

Y =0, X =1 (constant). The output of the filter therefore is constant
(o ¢« B). An exception occurs at t), where F; = &,

0 <Y <1, X converges, but oscillates about the value T—%'V. The
filter oscillates with period 24t. This is equivalent to exactly the Nyquist
frequency. (See Figure 2.)

Y= 1., X alternates between the two values O and 1. The filter
output oscillates between & and B.

Y > 1. x and the filter output are both oscillatory and divergent.

For a filter to be both stable and non-oscillatory, the coefficent Y
must fall within the range

-1 <Yy <O

VII. THE F'NDAMENTAL IMPULSE FORMULA. Repeating for conveniance

F_az+ 8
LA e (1.1)
Let x = 8/a, Then
-F- - QO -——-—‘-‘—1'1 : ‘z-l (1 2)
¢ 1 + YZ2© ‘

Clearing of fractions,

(1 +v2"HF = a(1 + x271)¢

This difference equation can be written

P+ YP

= A
n n-1 al@n * ‘Jn-1]
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i But

v
=

$
i
E
E

—~

':;‘

&

¢n =1 (n> Q) ;

and . £

2im ;.

1e Fi. ! 'f'

Hence 3
1t +y=alt+«] (10)

From the difference equation is derived

n-1 n n-1

BrYIF =afle +xlog]

- B

Lidadabpoentitiiva ) [ o0 L EDRE DU LN

Since P, = ¢p = O, this can be written as

n-1 n~1 n-1 n-1
PR +F vy IR omalZo v vl

n-1 n-1
(1 +v) f F, - a(t +x) f ¢, ~o ¢, -F

_ But
1“Y-“(1"‘)r

hence

n-1
(1 +v) f (Fi - °1) =a¢ -F

Remembering that ¢i = 1 and letting n+e,
L]

a

1

-1 1
z (Fy =) =775 - eyl (11)
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o Making the substitution N
: 3
M ¥
. -l :
Ty v« (10) f
:,? -
: - 1 1 - Y K E
. L (Fi -0 1+ 1 +y t+vy 1 +x (12)
E'E .For two cascaded stages ;
bl ' ' A
i p (r + ¢ 2-1)(1 + x,2-1) (1) -
¢ "M% 27D + vz D) 3
§ An exactly similar development yields ¥
: - 1 1 1 .
i L (Fi - 1) 1+ K T e Ky 1 +Y, 1+,
" Y, Y, <, <
T+7, T+7; T+8 T+x, (14)
The subscripts on the right refer to filter stages.
? It is apparent that the process can be extended to any number of stages --- ' p-
. say 3. Thus can be stated in general form (for j stages) the FUNDAMENTAL
: IMPULSE FORMULA
. ; . ®
i [ = at f (Fi 1)
1 1 1 1 %
; = At <1 . Kl + 1 + ‘2 + seee * 1 e K - T+ Yl
§ J 15
i! f'-
- o o "
it Tey, 777 1 ey ;
E‘ - L Y2 A5 a2l -
}' At (1 + Yl T+ Y2 * eese * 1+ Yj - 1+ Kl :"
k K K4
b '1‘»:2'“‘"14-() (15) ]
1 J ]
Or, since 1 + vy = a (1 + «), (10) .f
|
!
L
2
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@ -1 @ -1 a, = 1 :
: 1 2 j
- : l = 4¢ (1 - Yl + 1 ‘Yz * o0 * 1+ ) (16) ;j
o J £
: For a single stage, | = at (& (1) g
) The constraints upon Yy imposed by the requirement for filter stability %
; ensure that the denominator ia positive. Hence a > 1 is the necessary 3
o condition for a useful gontrol filter (]| > 0), It follows immediately that k-
£ 1 +x also is positive and that Yy > «. -
& For a given value of «, af(1 + Y) remains constant, but -1/(1 + Y)
increases with increasing Y. The function is maximized (for the allowable .
range) at y = 1. We choose the notation I
At i
lmax "2 (a - 1) :
y §
. For J atages, -
' At
lmax - "-2'((11 + 02 + seee * Gj - J)
H . 1 -~k
i But if y =1, a-1 = 7_7—?_’ and
£ 1 -« 1 -x 1 - < i
G l 2 H
é I -A—t' * + s e 00 + (17)
H max 2\ +«, 1+, 1 +«x
: J
-
§ It is proper to think of [gay @8 a boundary condition. But [joy
F is clearly unattainable, since the boundary is not included in the (open)
: region. 1t will be found that [nax always is reduced by an amount which

shall be called the attenuation and which is defined by
Ast, -1 (18)

- -

e

The proper dimension is some unit of time; e.g., ssconds or RTI’s.

Ipay can be called the "desired total impulse." It appears in tha
numerator of the r-plane tranafer function, as will be seen later. Since it
is a function of only the xj'a, the latter can be called the "impulse

coefficients."”
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VIII. THE ATTENUATION, A. Attenuation is defined by
A=l -1 (18)

Two forms of the Fundamental Impulse Formula can be combined by simple
addition to yield

{ -k 1 -k, 1 =k 1 -v
I-A—t- l* 2*..0. + Jj— !
2\ +x) 1+ % 1+ Ky 1+ v,
1 - Yy 1 -
-‘1—-:------....--'—-‘1'1 (14)
Y2 *t Yy
Thus
1 -y 1 -y 1 -y
A= AL - . e | (19)
2\1 + vy, 1 +y, 1+ Y4

If we define

A -0 (20
J 21*73
then each Aj > O, due to the limits impoaed upon y. PFurther, since
[ > 0 (for a control filter), A < [gax-

Therefore
lmax > A= Al * A2 Toeeee ® Aj >0

The attenuation can be computed separately for each stage and the parts added.

Notice that each A3 is a function of y4 alone. It is there-
fore proper to call the yj’s “ecoefficients of attenuation."

Por a single stage, let ua observe the effect upon AJ of various

‘values of y.

- 1<y <0 tuplies A, > 4%
- . AL
y = 0 implies Aj >
At
0 <y <1 implien AJ < =

Bkt — e
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The filter charaoteriatida, previously stated in termas of Y, can now be
atated in terms of A. For Jj atages, then

0 <A < Liat filter oscillates

A = Liat filter finite of duration jat
‘ _

338t < A< [m‘x filter smooth

A= Imax gero total impulse

As A approaches [pay: the filter becomes more sluggish.
Particularly note that a requirement that the filter be non-oascillatory

places a finite limit upon the number of filter stages. This limjit is, of
course

IX., COMPUTING THE COEFFICIENTS. Por a single stage

1 - t -2
A-%(;—:—}) or y -%;';—aﬁ (19.1)
. ) st - 2|
lmax A% (: :) or v (17.1)
max

Now A 1is a function of frequency response and may be amenable to some
adjustment. Not 8o [pgy- It is the "power" demanded of the filter, and
we expect to deliver only | of it. Can we recover [,,y completely?
The answer is yes. Instead of

A= lmax -1 (18)

we write

A= (lmaz + A - ([ + A)

or

A= (lmax * A) = lmax (20)

oot i
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We now find that

s * A" % TTE (21)

or
At - 2 - 2A
Iﬂ!.—

i at + ZIIIIGX * 2A

In other words, we enter [,.y * A into the formula for the impulse
coefficient and let the filter attemuate it baok to Jpgag+ It is possible
to do this because, in the time domain, so many of the terms are additive.
Particularly note that A must be determined firat.

Now [pax 1o a des r r imposed upon the filter. Arbitrar-
ily augmenting it by some amcunt (say A) altera nothing in principle. The
formulae can be atated

P R a2+ 8l
w . Z vy (22)
k' =g fa’ (23)

F—'- ’ 1 " "Z-l
o ° (1 + vz ) (24)
1 +y=a’ [1+«k’) (2%)

where the primes denote the new values resulting from the augmentation of
Imax: WNote that ¢ and vy are independent of [poy (as is A) and
hence are not primed.

X. COMPUTING THE COEFFICIENTS FOR A TWO-STAGE FILTER. If |-y 8and 7
are known, a single-stage filter is uniquely determined, since it contains, in
easence, only two coefficients (y amd «’).

Suppose the task is to deaign a two-stage filter. Other means must be
found for determining two of the four coefficients.

The firat atep is easy. For a non-oscillatory filter,

1
Inax > A > 238¢

If we set y = Y, " Yo then Al = Az - %At and it is ensured that neither
stage will be oscillatory.

1 -k’ 1 -«
1m*A=“( s J) (26)
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requires only that the sum within parsatheses be oonstant. Solving for either

’

'Y in terms of the other

at - (1 + ")+ A)

. 2
<1 k', + (v + ('zjilmax + A) (27)

Allowing x“, to increase without bound

tim - ~(J..* A
‘2 LIB1 o Imu A P (28)

If ¢’} =", =«x", then

at - (lmax LY

—Dax =1 +2p 2
B T A =

| 4

24

We thus eatablish limita for the «  sa.
P(x'ls1+2Pst<'2

It ie observed that as the « s approach 1 + 2P, more and more "power" ia
delivered at the firat RTI. In some cases, the half-life can be less than
At/2, causing the filter to over-corregt and generate unwanted noise. This
effect is moat marked when the two «’ 8 are equal. (At 1 + 2P, of coursse.)

Little case can be made for a half-life less than At. Using this as a
restriction, and noting that at the first RTI

4

:—‘ =a’a’, (30)
it develops that
' 1
(Q 10. 2 - 1) At < almax (31)

Now

. o 24t
1V +y a (1 + K ) at + A
allowing us to develop a second equation in the «'8. The solution, provided
it exceeds 1 + 2P, will furnish a practical lower limit for «‘,. To avoid
negative total impulse (for the stage), use an upper limit of « 2 S 1.

Often it is effective to set n<'2 equal to unity. A useful side effect
is that one term drops out of the |gqy =2quation, since

At (L-x' 1 -1
lpax * A =% (1 AR
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and thus the formula for x° is the same aa the single-stage formula. The
filter is now implemented by

Ffl e | Qe e2m(1 v 271)
o " %% [(1 vz (. vz”)] (32)

Extending the method (1 = x’, = k'3 = etc.) to filters of still more stages
way not be warranted. The additional stages will be smoothing atages only,
and the resulting filter can be very sluggish. In fact, the ratio In/I

may actually take on negative values for the first few RTI’s, a most
undesirable characteristic for a control filter. (See Figure 3.)

R.T.Il. %
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In order to illustrate the effect of varying «’,, three compensated i3
two-stage filters were synthesized to the requirements i
T : lmax =25 At
and *
if
2 :
= t
. A= 58 It
x’, was arbitrarily set in turn to the values 1, O, and - 1; :
Results are depicted graphically in Figures 4, 5 and 6.
i.,
t .
b
1
4
s
: ;
;
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XI. TRANSFORMATIONS AND CONFORMAL MAPPINGS.* A useful tool developed to
simplify the solution of certain differential equations ies the lLaplace

Tranaform, defined by
L [F(x)] = I:-sx F(x) dx = f(s)
0

provided the integral exists. Therefore, the Laplace Transform is an integral
operator.

#In this paragraph, J = /CT
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The complex variable s 1is of the form 8 = 0 + jw, 0 and w being real. §
The function f(s) is many-valued, being periodic in 4jnw;, where n 1is any v
integer and w, is the Nyquist frequency (often expressed in radians per 3
second). )
4
For band limited functions, it becomea expedient to define another
complex variable :
r=op+ ju 7?
by - .
rAt sat g
> tanh ) (33) §
The frequency response in both r- and s-planes is given by setting p = ¢ = O, H
from which
v
A8t . gann L98E < L j ten (-82%) :
Thus 2%3 = tan 9%3. It follows that for w, = z%. the s-plane zero-strip
maps into the entire r-plane. As a result, the new variable r 1is single-
valued.
w 1is called the NATURAL frequency.
v is called the WARPED frequency. 1t is found to be related to the
attenuation by
A= % (34)
It is very easy to demonstrate that the transformation Z%E = tanh 2%3 is 4
x -X - a~2X 3
bilinear in Z2-! and r, since 2 = et gnd tamn x-S - .10 4
AT SRR S e =
eX + @°X { + @-2X 3
whence 4
-aAt - ‘
bt | st 1 - e 1 - z7)
5~ = tanh S3% = —Z=wpt = 75T (35)
The inverse transformation is, of course o
. mt
.2 (36)
Z -

In the presen: case, the form of the filter is known, and is expressed in
povers of 2-!, The r-plane transfer function is recoverable immediately
by direct aubstitution.
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For a single-ataxe filter, the desired difference equation is of the form

E.e ({—}%ﬁ;—g (24)

$
Substituting for 2-!, it is found that

’ 1 + K' * Lg&[' - K‘] ‘
= a’ Y (31) 2

F
¢ 1+Y+r—§I[1-Y]

Repeating for convenience 3

at 1 -
A== (1—7-3) (19.1)

lpax * A= 4 55 (21)

1 +y=a'(1 + k") (2%)

L T e Lt ¢ sl ALRENEEY £HY

it is seen that the r-plane transfer function can be written

1 + l + A)
= Coy (38)

E.
¢

It should be clear that solution in either the r-plane or the Z‘l-plane
(which two are connected by the stated bilinear transformation) is easily
implemented in a digital computer, since only atraightforward arithmetic is

involved. Not so in the s-piare, where logarithms (e.g., tanh -1(!?31).
expone:tials, and the like will be required.

’

Por a filter of J atages, if Y=y = y = ., . = Yy and x'z =<, -
ves = K'j = {, the r-plane tranafer funcéion fs

1 + r(Imax ; A) (39)
(1 + rp)

E.
¢
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INVFERENCE PROCEDURLS FOR DETI.KMINING LIFE TIME ESTIMATES
OF ADVANCED MATERIALS

Donsld Necal
Edward M. Lenoe
Donald Mason

Army Materials and Mechanics Research Center
Watertown, Massachusetts 02172

EXTENDED ABRSTRACT

L An improved procedure for treatment of so-called censored data has 3
been developed and life-time estimates made for proof tested ceramic rotor
hubs, in a2ddition to development of quality assurance control of powder
metallurgically produced turbine engine discs. These represent situations
for structures to perform under extreme environmental conditions and
analytical procedures to aid in achieving required component capability.

Two and three parameter Lognormal and Weibull functions represent the
candidate statistic models. These functions are examined for best repre-
sentation of data in order to provide flexibility in the fitting process,
The functional parameters are obtained from the maximuwm likelibood (M.L.)
method. This method provides a superior representation of the cyclic
fatigue data as compared to the more conventional procedures. The M.L.
method can also provide the desired confidence limits for the parameter
and reliability determinations associated with the given data set. 7The
inadequacies associated with the method of moments, graphical procedures,
etc., in obtainming the functional parameters is recognized from the arbi-
trariness of the functional representation of the data. The acceptability
of these methods is acutely data dependent.

The need for considering all data including censored data is
established. Both lower and upper bound censored data are considered
as they relate to proof testing and run-outs respectively. An improved
probability of failure computation can be obtained when the total data
set is represented. Partial probability ranking procedures tend to
introduce substantial errors in the extrapolation process necessary in
obtaining mipimum life-time estimates. By including censored data, one
can provide a more complete understanding of the materials capabilities.

The results of combining the M.L. method with the inclusion of
censored data are compared with conventional procedures in obtaining both
structural reliability and material probability of failure computations.
The comparison indicates a substantial nonronservative estimate of failure
probabilities can occur if threshold stress values are obtasined from proof
testing without consideration of the censored dats. Application of the

M.L. procedure provided an improvement in the functional representotion of
data.
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ANALYS1S OF_CENSOLLD DATA

Jntroduction

Oftentimes in procurement of structural ceramic components, screening
tests are employed to attempt to verify component (part) quality. Typical
of such tests are room temperature (cold) spin tests of rotor hubs. Usual
practice calls for delivery of successful spin tested parts and these are
then treated as if guaranteed strengths were existent. We desired to more
fully exploit the information gained during such screening tests. As an
example, during the conduct of screening experiments, failures were observed.
Ordinarily these failures, or the failure date is not reported., It is
obvious that the fajlure rate data provides useful information in plspning
for component reliability levels and is necessary to establish a rational
quality assurance plan. Thus this study explores the use of censored
statistics to provide reliability estimates incorporating minimum sCreening

- strength levels, and also the failure rates (standard deviastions ind.)

associated with spin tests. The influence, for instance, of 5% versus 10%
failure rate during screening tests are documented. Monte Carlo techniques
are employed to establish desired screening test procedures.

Suppose, for instance, fast fracturc probability of failure estimates
were made using conventional Weibull statistics. In this ipstance, the
screening level is treated as a lower bound. However, censored datas
techniques allow taking into account the likely component failure rates,
based oo the observed screening test data. The purpose of the following
calculation is to compare the degree of conservatism of the two reliability
estimates. (1t was observed that the censored data technique provides the

more conservative results.)

These comparisons provide confidence in using the screening test data
itself for the estimates of production reliability. The implication of
these results is that continued local mechanical strength determination
testing can be minimized and lot component sampling, coupled with spin
tests can be adopted to insure hardware reliability. Treated random sample
selection from lots can predict rorresponding failure of total lot. It is,
therefore, important to consider failure below minimum load level.

In representing fatigue data were run-outs (non-failed specimens
tested at predetermined number of cycles) exists, it i: usually necessary
te apply graphical methods in determiniog prescribed probabilities and
their corresponding cycles to failure. The graphical approach requires
representation of only the failed results. The remaining data is included
only in representing the ranking of the data. This method is often sus-
ceptible to error because of the arbitrariness that exists in interpreting
an acceptable regression line for ranked data. Optimum coefficient methods,
for example, will introduce sizable variation in slopes such that a unique
threshold value for function becomes very difficult to determine. Since
the extrapolation of the regression line provides the necessary probability
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namber it is therefore critical that the slupe of this line be properly
determined. If all data is considered including run-outs then & censored
dats analysis procedure must be applied. The present analysis outlined

in this text applies this analysis including the appropriste M.L. pro-
cedures. The Weibull and Lognormal distribution were candidate functions
since they are usually the most acceptable representation of fatigue data.
A comparison between graphical results and that of the M.L. censored data
method indicate substantial differences. The graphical results showed
highly non-conservative estimates. Ibo this ipstance the component material
o would have been rejected instead of accepted as indicated by the censored
B data method.

ety R

Following is a general description of the analytical technique developed
in treating the problems.

Weibull Function

The Weibull function has been commonly used in failure prediction of
ceramic and high strength fatigued materials., It was determined from the
analysis of the rotor disc and helicopter component data that the best
representative function was also Weibull, therefore, the M.L. analysis of
: censored data for this function will be developed in this psper. The Weibull
probability density function of the random varisble X is

e e
S ————— ¢} T 0 Y o ——

(1)

f(xlou. o, m) = [m(x-op)m'l/oom] exp {~[(X-ou)/°°]m)

where o , m>0 aud X>o >0
o - u—

9., 9, and m are the location, scale and shape parameters respectively.
The log of[ETe Weibull likelihood function for dual censoring can be
written as

LrL = LaN! - Lar! + (No-r)(an-anoo) - Ln(N—No)

N N
o o m
+(m-1) § ln(X;-0) - Y o{(X.-0.)/0]
. u : i w7
i=1+l i=T+l (2)
m, m . B m
+an(1-exp[-(xr+1-cu) /o, - (N-NO)[(XNO Ou)/oo]
where
N = total number of data points including the censored values,
No = number of values prior to run-outs (fatigue data)
and

r = number of data values less than the proof tested value
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The M.L. eguations are determined from the par&ial derivative of Lnl
with respect to the three paramcters set equal zero. That is,

ilnL i
do =0 ;
o [+ -
; (3)
LnlL
am 0 £
slnl 4
36 -0 1
u ¥
where ;
t
N t
olnL f
—— = -n{N-r)/0 +m (X.-0 m/o m+1
aoo o i=§01 i u) ° g_
-mr R m - m m m+l
mr(X_,y-9,) expl (Xr.y-0) /o, ]/[co ¢ {l-exp[~(Xr,]-ou)m/com]}]
Al 1 N N .
“ame = (D - no)+ T oLn(X -0 ) [ n :
o . -0 - (X.-0 o
m ° i=Te1 i j:rzl i u)/ u]
‘Ln{ (X. -0 - m Y |
[(xj-070.) + r(x_, -0.) tnl(x ,y-0,)/0, Jexpt-[(x_, -0.)/0 1"}/ B

4]
log (1-expl-(x_,;-0,)"/0 "13]

and
aLnL N 1
=== (1-m) I (X.-0 )~ -m m-1 m-1
30 ( [} + mo X.- - -
u jege] 1 U i=§41( i%) mr(X_,;-9,)

.EXP[‘ (xr+1-0u)m/com]/[0°m{l-exl_)[- (xr¢1-°u)m/0°m] )]

*Note: When N = N_ and r # 0 then lower censoring is applied as required
for ceramic disc analysis. If r = 0 and N # N_ then upper censoring is
used in evaluating fatigue results for the helicopter component. The result-

ant equations above are for the case where N = No'




MAETL TR

ALARLTLEY. TR T Nonp

An iterative procedure has heen developed for determining the M.L. param tos
60, 6u and m. Initial estimates are obtained from the moment method without
censoring. From these estimates each parameter is determined one at s time

in cyclic order in equation 3 until reasonable convergence is obtained. At
each step, the rule of false position is used to determine values which
satisfied the likelihood equation with prior estimates of the other parameters
remaining constant. Note, if a large percent (greater than 50) of censored
values exist, then it is necessary to gradually increase the amount of
censoring in order to obtain desired convergence. If a two parameter Weibull
function is desired then omit o, in the computation process.

Lognormal Function

Although the Weibull extreme value function is commonly applied in
representing ceramic strength data, the lognormal function can provide
an option if the Weibull function is not acceptable. The lognormal
function has been inclufg? in the evaluation procedure. The likelihood
function is defined as:

f(xr+l' ey xN H,0,1)
N N, [Ln(x 2
! o 1 PR (tn(X;-7)-u] .
[(SRER S RS S
0 jepey OYV2T(X,-T) (e 20 (4)
N-No by
-{1 - F[ZNO]) (Fz,,, )

where T is the location or threshold parameter and m, O are mean and
standard deviations respectively. N, r and No are defined in the Weibull
analysis.

The function F is defined as:

Z.
F=f 'f(t)dt
where
Z; = [Ln(Xi—r)-u]/c

and
£(2,) = (2n)‘ls exp (‘212/2)
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The complete development of the M.L. function for the log normal is

omitted since it is similar to that developed for the Weibull function.

A much more severe convergence problem exists in determination of Lognormal
parameters, particularly for 50% or more censoring. Therefore, it is
important to obtain reasonable initial estimates in addition to introducing
small increments of censoring until the desired amount is obtained.

Quality Assurance of Rotor Discs

The failure prediction procedures described previously where applied
. to data obtained from both spin and flexure tests of rotor disca. Tests

' were made in order to establish quality assurance of the disc material prior

: to manufacture into ceramic engine rotors. The spin test is applied initially
in order to guarantee a minioum strength level for the disk. This lower bound
(threshold strength) was obtained from spinning the disk at an angular veloc}ty
of 60,000 rpm. The equivalent forth point flexure test results are 350 N/mm
at rim section (R1 Figure 3) of disc, this stress value is obtained as shown

in Figure 4.
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Subsequent flexure tests were conducted on the surviving disks. The test
specimens are selected from locations outlined in Figure 3.

The Results of the Censored Data Analysis Procedures

Data is analyzed for flexure specimens obtained from ring 1 of disk

(see Figure 4) in order to be consistent with the threshold strength level
obtained from spin test at this same location. Since there was a limited
amount of data from available disks, it was necessary to generate additional
data in order to demonstrate the effects of the censoring process as related
to failure predictions of the material. The censored data relates to the
number of failed discs resulting from spin tests. The remaining data was
obtained from selecting randomly, values generated from the Weibull func-
tional representation of flexure results in ring 1.

Initially is was assumed that
without consideration or knowledge
A plot of the ranked data (flexure

flexure data was obtained from 100 rings
of the number of failed discs in spin test.
strength) and the corresponding Weibull

functional representation is shown in Figure 5. The RMS error tabulation
determines thc best functional representation and is defined as:

N
2 (5)
Rus = [T (Ry () - F(20) /M)
i=1
where s 3
i-. . i-.3 < i
R v R v ™Ml
1 = 1' 21 3: . » N
and N = sample size
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F_ is the cumulative density function selected from the four candidate
functiSns (normal, lognormal, Weibull and the radical function). See
Reference 4 for details regarding radical function. In Figure 5, the radical
i function was the best fit with Weibull the next best representation. The
s3 sean and standard deviation is also tabulated with their corresponding 90%

' confidence intervals. In box the labelled Weibull parameters, the dispersion
scale (char. value) and threshold value 0u (origin) are displayed with 90%
confidence intervals. O intervals are not as precise estimates as those for
the other parameters.
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The 99% origin number is the 99% probability of survival value with
adjacent number being the lower 95% confidence limit. The latter number

represents Ehe so~called design A - allowable. 1In this instance it is
368.35 N/me™. The radical parameters are also tabulated but will not be
describefsin this text (see Reference &4). The box for non-parametric
solution provides for design A and B allowables when parametric repre-
sentation of the data is not acceptable. The optimal tabulation iundicates
300 and 30 data points are necessary for the A and B allowables. Instances
where 99 date points are available, a 99% survivability point (smallest
stress value) has a 63% chance of being correct. The B allowable (90%
survivability) has at least a 95% guarantee of being correct. The design
A allowable determined from Weibull function will be of primary consideration
i in evaluating the effects of censoring data as it relates to hypothetical

. failure rates of the discs.
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The results from Figure 5 essentially describe the failure prediction
of the disc when with additional data (spin test) omitted. There can be a
serious problem existing if this spin test result is omitted since the
test only prescribes material strength guarantee for small regions of
the disc. Therefore, it is essential to recognize that both spin test and
flexure tests are material strength characterization tests. Figure 6
presents the results from a 10% failure rate, that is, assuming spin test
resulted in 10% of total nymber of discs failed. In this case, the
A-allowable is 297.59 N/mm~, a sizeable reduction from the case were not

_spin~test failure existed. Lognormal was the other candidate fuaction but

did not provide the best representation of data. Figure 7 Qhows the results
for 20% failure with a resultant A-allowable of 230.42 N/ . If a failure
rate of 30% existed then A-allowable would be 194.57 N/mm™ as noted in
Figure 8. The data is not well represented in this case, but if no alternative
is available then these results will provide the necessary conservatiss in
contrast to omission of the censored results. The effects of ignoring spin
test failures as they relate to censored disc data is obvious, therefore, it
is important to consider all test results; both flexure and spipn tests. In
Figure 9, a plot of probability of survival versus RPM is shown. Note the
reduction in allowable RPM when spin test failures have been considered. For
example, if 30% failure rate existed, ther 95% survivability of additional
discs would limit the maximum speed to 40,000 RPM.
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Fatigue Data Evaluation (Helicopter Engine Compoument)

The low cycle fatigue data with upper censoring (run-outs) shown in
Table 1 was obtained by strain control mode of testing where total axial 3
strain range is the controlled parameter being held constant, The material ' ;
is a HIP Rene 95 powder metal used in helicopter engine components.
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‘is a one percent chance for the log-cycles to failure to be less than

Initially the ranked data tabulated in Table I was plotted on Weibull
probability paper (see Figure 10). A regression line was obtained from
an optimum condition coefficient results. The 95% confidence limits for
the line are shown in the figure. The 3.54 cycles designation describes
the 99% probability for a larger log cycle to failure. That is, there

3.54. The 95% confidence limit was determined in conjunction with the ig\
99% greater cycles to failure in order to describe an A-allowable for "5;
fatigue strength. 1

VEIBLL PRBABILITY AT ok
%o | 5
00 | E
00 | 8
gm0
2 10.0 I B
B sol
10}
orf
3.0 38 4.0 .5 5.0
" LG OTLLS TO FAIUSE FIGURE 10
Figure 10

In Figure 11, a plot of the ranked data with the corresponding
functional relation are shown. Functional parameters were obtained from
the censored dats analysis described previously. The failure to represent
lognormal results was due to excessively large percent of censoring. This
could have been corrected if partial censoring was implemented. The two
parameter Weibull functions excellent representation discouraged the need
for this modification. The relatively small RMS values for the Weibull
function are consistent with results for the smsll residuals noted in the
graph (see Figure 11). The broken line representing the graphicsl method
results shows relatively poor representation of the data. This was not
noticeable from the graphical plot of data. Although this poor represen-
tation occurs in this instance, other sets of censored data were well
represented by the graphical procedure. The problem exists, in that the
graphical method is not consistent in providing a good representation.

The M.L. method applied to the censored case invariably results in a
desirable data representation. A tabulation of the A and B allowables are
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shown in the figure. Note the relatively large differences in the results
from the two methods. The consequeance of this overly conservative estimate
from the graphical procedure can result in unnecessary rejection of a very
expensive engine componenrt. Figure 12 shows the results from another set
of data where a considerable large amount of censoring exists. Note, the
excellent representations of this datu by the M.L. method.
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CONCLUSIONS

The apnalytical treatment of truncated data obtained from the ceramic
rotor has been discussed in some detail since the results have important
implications regarding use of proof testing and qualification data.
Furthermore, calculations of the type presented herein are of importance
for establishing meaningful productior lot sampling procedures which rely
on limited quality assurance and spin test data. It was evident that
neglect of statistical information contained in the spin test failure
rate data, leads to non-conservative mathematical representations for
material behavior.

The previous discussion obviously represents one narrow facet of
analyzing failure of components.Thus far nothing has been said concerning
time dependent failure response of structural ceramics. It is worthwhile
commenting on studies directed towards the objective of understanding such
phenomena. While fairly extensive data is available to the designer which
permits materials choices for particular applications, it is worth noting
that many of the inherent mechanisms which produce microstructural and
physical and chemical changes are not fully understood. It is not possible
at this time to present a comprehensive mathematical model for all ceramics
which accurately accounts for all controlling materials phenomena, such as
the physical changes induced under severe environmental limits, as well as
creep, slow crack growth and other aspects of time dependent behavior.

Apn accurate determipation of a prescribed probability for specific
minimum of cycles to failure of the Rene 95 material can be realized if

all data is censored, represented by the Weibull function where corresponding

parameters are described by M.L. methods. The uncertsinty involved in the
graphical approach should be avoided. The argument that it is easier to use
is not valid at the present time. The simplest programmable cslculator can

provide the necessary computation for the M.L. method. Although probabilistic
life estimates have been made for the previously mentioned material, the M.L.

method can also be applied to most other fatigue data.
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RISKS TO NEIGHBORING FACILITIES*

Paul C, Cox
2930 Huntington Drive
Las Cruces, New Mexico
(505) 522-1756

985¥RACT3 Many military installations. as well ag industrial

ac es, conduct operations which can present a safety hazard
to personnel, property, vehicles, industrial facilities, and
communities thst lie in the neighborhood of the installation.

This report considers a military installastion which tests missiles
and rockets, as an example, and discusses orocedures for estimating
risks from these operations to neighboring facilities. The
Procedures of this report should also be apvrlicable to many other
types of operations that are found on a variety of military
installations and with a number of industries. Estimates of

risk will be provided for certain critical points and also in

the form of contour maps, which will show the risks for the

entire region, Methods for obtaining confidence limits for

these risks will also be discussed. Finally, some suggeseéions

are offered regarding comparisons of risks from operations to
every day life; and from these comparisons, it may be possible
to decide whether the risks from an operation are sufficiently
small to be accepted.

1. INTRODUCTIONS

a. Operations conducted by many military installations may
cause safety hazards to personnel, property, vehicles, ind-
ustrial facilities, and communities in the neighborhood of
the installation, These operations include the testing of
rockets, missiles, alrborne targets, aircraft, explosive
devioces, materiel emitting radiation, ete. It is the purpose
of this report to discuss a few methods for estimeting the
risks created by military operations to neighboring
facllities.

b. Specifically, consider a military installation with the
primary mission of testing rockets and missiles, snd the
risks that may occur as a result of a malfunctioning round
flying off-course, impracting in an undesired location, and
causing serious damsge to an industrial facility located at
the unplanned impact point. The methods of this report are
easily extendable to other types of military installations,
various types of industrial operations, and a variety of
possible targets.

#This 18 a condensation of the original report. A copy of
the complete report may be obtained by writing to the author
at the above address. 99
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¢. The purpose of this study may be to consider the risks upon one
(or poszlbly two or three) spesific target. This target may be
an industrial plant, a town, a highway, etc. On the other hand,
it may be desired to learn the risks at every point lying within
the region surrounding the military installation. If it 1is t:;
latter, the end product of the study may be & contour map or1 e
area, with contour lines indicating the probadbility that durling
any 12 month period, a malfunctioning object may strike at alri 4
point along the 1line and do damage greater than at some spec e
level. The reasons for studying the risks for an entire
neighborhood includes (1) The entlre reglon around this
installation may be covered with industrial plants, farms and
ranches, communities, highways, and other points of concerng

or (2) a company may want to locate a plant somewhere in the
reglon around the installation and will want to know which areas

are safe enough.,
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d. A primary working tool for this study 1is a set of maps. These
maps will cover the entire region of concern. They will be in
bPlack and white, will show very li‘tle detall, but will show the
boundaries of the test facility, major highways, larger communities
and points of interest. These maps will also contain reference
points, which may be thought of as the points of intersection of
equally spaced vertical and horizontal lines. The closeness oOf
these reference points will depend upon the accuracies desired and
the amount of work that one wishes to do when evaluating the data.
Figure one i3 an examble of such a map, with reference points
located 10 mi, x 10 mi. apart. Actual working maps should be two
to three times as long and wide as figure one,

e. The target that will be used as the example for this report
will be an industrial complex covering 100 acres = .1563 sq. mi.
It will be assumed that if an object tested under the project
under consideration impacts within this 100 acre complex, damage
at an unacceptable level has a 100% probability of occuring.
(Note references 2 and 3, or Appendix E of the original report,
for some techniques for the extent of damage to expect if an
impact occurs.) Finally, risks will be computed over a 12 month
period of time, It is then believed that the risks obtained from
a study svch as this can easily be extended to other types of
targets and for different periods of time.

bl Al )

-

2., Project Classificationt

a. Record all test programs that are presently assigned to the

installation as well as those expected to be assigned within the .
next few years. Also, review some of the programs that were 4
previously assigned to the installation, because some of these |
might provide information that can be useful in the evaluation

of present or future systems.

b. Determine which projects present no risk to targets of concern
and remove them from further study. These projects may involve
testing objects with insufficient range to reach the boundaries of
the test installation; the test objects may be of such material
c?:t tg;ytgill dg no aer;ous dam;ge if they do impact in a critical
areaj e system ma e 80 relil

S vl rtually 1mpossib1z. able that an unplanned impaoct
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ce. Collect the following information for all of the remaining
pProjectst

(1) System design and performance characteristicas.

(2) Bxpected reliability and accuracy of the system.

(E) Bxpected number of future tests,

(4) Expert opinion on the reliabllity amd performance
characterisitcs of the system.

(5) Mass, shape, penetration capadlilities, and other des=
tructive characteristics of the test object,

(6) If test data exists, collect the following:
(a) Total number of tests that have been conducted.
(b) Number of rounds that have malfunctioned, reulting in

unplanned impacts.

(¢) The location of unplanned impacts.
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de. Order the projects on the basis of the amount of test data

that is avallable. Analyze those pro jects with a good deal of
data first, because the results from these projects may be

useful when evaluating those projects with little or no test data,

3. constructing a Footprints

a. A Tootprint must be constructed for each project which can
provide a threat to any target under consideration. This foote
print, when constructed, will be superimposed upon figure one,
as 1llustrated by figure 2. (See page 7 ), It should be pointed
cut that some projects will require more than one footprint, one

4 for each test configuration,
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b, The footprint that is being used to 1llutrate these procedures
consists of a set of concentric ellipses. The procedures used

to construct this footprint are discussed in detall in appendices
A, C, and D of the original report. Examples of other types of
footprints are discussed in Apprendix B of the original report,
The footprint used in this study may be desireabdble if it can bs

determined thatt

(1) The unplanned impacts appear to be distributed approximately
as the bivarlate normal.

(2) The center of impact, the angle of rotation, and the
variances can all be estimated by one procedure or another.

ce It 15 assumed that in this illustrated example, there exists

a considerable amount of test data which can be used to estinmate
the required parameters. The coordinates of the unplanned impacts
are listed in table 1 (Page 6). There will be many instances in
which 1t will be necessary to estimate these parameters by methods
that do not depend upon test data.

d. The projest used to illustrate these procedures will be
referred to as Project A. The following information will be
used to construct tnis footprint, in addition to the information

listed in paragraph le:




f.

e e e

(1) 240 relevent tests have been conducted under project a. Of
this number, 18 rounds were unreliable and unplanned impacts
resulted. JImpact data for the 18 unplanned impacts may be
found in columne 2 and 3 of table 1.

(2) It has been estimated that there will be about 32 tests each
year ror several years to come, Thus, we can expect abdbout
2.40 unplanned impacts per. year.

(3) Assume that for this type of test, a flight surveillanoce
system has a 90% capability of destroying or diverting
malfunctioning rounds so that no damage will oocur to a
targete.

The x and y coordinates of the 18 data voints (see col. 2 & 3
of table 1) must be transformed as follows dbefore constructing
the footprintgs

(1) The (x,y) coordinate- must be translated to_provide an
(x',y') coordinate s_stem such that X' and y' equal gzero.
The (x',y') coordinates are listed in columns 4 & § of
table 1, and the values of x'ey*! gare listed in column 6.

(2) A rotation of axes, providing (x",y") coordinates, i=
necessary 80 that rynye will equal zero. The rotation

formulas ares X" = X' ¢c08 @ + Y'e8iné and
Y® = =x'sin @ + ytecos @
Where @ may be obtained as followss

tan2@ = _2 ° X'y’

The derivation of the above formulas may be fournd in
aprendix C of the original report.

The (x",y") coordinates for the 18 unplanned impact points
may be found in columns 7 and 8 of table 1, page 6. The
values of x".y" are listed in column 8., It may be seen
from table 1 that x* = y" = ryeyn = 0, which 18 exactly
what the translation amd rotagign was expected to
accomplish., Using (x',y') data from table 1, & = 37,79,

The footprint will now be constructed and superimposed upon
figure one, usinz the following procedures. This will be
illustrated dby figure two,

(1) The footprint will consist of 9 arbitrarily chosen,
concentric ellipses. These ellipses will be constructed
to contain 20%, 40%, 60%, B0%, 90%, 95%, Y9%, Y9.5%, and
99.9% of the expected unplanned impacts. If the number of
ellipses is increased, it should result in improving the
precision of the estimates of risk. It will, however,
increase the labor required to obtain the estimates.
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(2) The 9 ellipses will be Of the forms Eo. « _l%_ -1,

I LT

.2 |
since ryaye = 0, & = krszaf D = kvsy"} k = A/~ In(1 = Py .
The forauls for kK is developed from the x° distribution

with 2 degress of freedoa, in apdendix D of the original
report.

{3} Teble 1, showing the (x,y)} (x'y'); and (x",y") coordinates
for the 18 unplanned imbact points for Project A, 1s shown

delow,
{1 (2) {3) (4) (5) &) (2) (8) (9)
x! l' :-1"‘7' an L" 1-'1-
‘? C}Z 43 -19 -13 } 499 «d3.6 0.9 ~11.8
2 =30 - ~13 .14 162 | -18.8 -3 58.3
. 23 -1 -6 -11 6o | =11.3 ~5.0 5745
3 =30 4 .13 -6 78 el4.0 3.2 il 8
S «28 ? -11 -3 33 | ~10.5 bolo Y] ,’
6 -22 S -5 -5 25 | 7.0 =59 63 |
? 22 11 -5 1 -5 3.3 3.8 ~12.5 ]
8 -2 16 L) b -36 141 e‘“ "902 i
9 e} 9 -3 -1 b -l.; Ig.g 12'3 3
- .9 "‘5 «ls - . » 5
{g -123 é 3 -2 "8 e -‘0.0 ‘7-5 B
12 15 18 ? 8 1% 6.5 5.1 3.2 .
13 =11 16 6 ) 16 8.4 1.1 9.2
14 =10 21 7 11 77 12.3 3.4 54-3
15 b 13 11 3 33 10.5 4.3 %5
16 b 19 11 9 39 14,2 0.4 5.7
17 -1 18 16 8 128 17.6 -3 4 -59.8
18 ) 23 17 1) 221 21,0 | 241 :-2.1
Sumg | =308 180 0 0 1167 0.1 i 0.1 0.7
0
Mesns -17 10 o 0 0
Su;‘ct Q. 1860 1250 276145 367.2
St.Dev 1044 8.6 12.745 4,519
T, 0.77 { 0.0
3 i
TABLE 1

"2 %)t and (x*,y*) Coordinates of 18 Unplanned

oints,

(&) Pilgure 2,

shows the footprint for Project Ay
superimposed upon the area map of fizure one.
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4, Assignment of Probabilities to Reference Pointe.

a. Reference point E-il4 will be used as an exsmple to 1llustrate
how riske are assigned. Note that point E-14 is located within
the bard which 8 boumd by the .95 and .99 ellipses. (see the
footprint, fig. 2.)

Lo b. Begin by computing the probability that over a period of 12
months, a test object from Project A will impact within a target
as degcribed in para. la, and do damage at an unacoceptadble level.
The computation will be for a tarzget lying within the band boumd
by the .95 and .%9 ellipses, the band which contains the reference

o point E-14. Therefore, the probabilities will apply to such a

E target lying at or near point EB=-14.

(1) The risk from a single test assigned to Project A 18 as
followss

R= 1563 X 1.00 X 18/240 X .10 x .04/582.674 =
8.0474 x 10°8, wheres

{(a) <1563 8q. ml, = 100 acres, which is the size of the
industrial complex under consideration,

(b) 1.00 is the probability that damage at an unacceptable
- level will occur if there is an impact within the
¢ ' industrial complex. (note appendix E of the original
report for further discussion).

(¢) 18/240 = .0750 comes from 18 unplanned impacts
(unreliable rounds) from a total of 240 tests.

(d) .10 18 the estimate of the probability that the flight

P surveillance system will fail to destroy or divert the
t unreliable round in such a way as to avert an unacceptable
S level of damage. Assume this was based upon 380 attempts
p in which 38 were not successful,
(e) .04 is the probability of falling in the band that is
bound by the .95 and .99 ellipses.

(rf) 582,674 sq. mi. is the area of this band,.

(2) Since it is estimated that there will be 32 tests per. year
unier Project A, the risk to the target from Project A, over
a 12 month period is as followst

P(Risks for 32 tests) = 1 = (1 = 8)32- However, for small R,
P= 32.R = 32(8.0474 x1078) = 2,5752 x 10~

Also, for small R, this can be extended to any rumber of
years by multiplicagjon. For example, for 25 years,

P = 25(2.5752 x 10~%)= 6,438 x 1075,

Note that 2.,5752 x 100 18 the risk assigned to the band
bourd by the ,95 and .99 ellipses, Risks from Project A

to the other bands are computed by a similar method, (Note
the footprint on figure 2.)
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¢+ Finally, the risks will be computed fOor a target as doscrlﬁod
in para, 1e, located at point E-14, from all projects located at
the installation, and for a period of 12 months.

(1) The rfirst step is to review all footprints from all projects
and observe which contain point E-1k,

(2) Then, using the methods of para. 4b,determine
risks for point E-i4, from all relevant footprints. These
risks will be added together to give the overall risk froom
the entire military installation., It was observed that
there weré 10 footprints that covered the point E-i4, and
the risks associsted with each is 1listed bdelow.

PROJECT RISK PROJECT RISK
— A 2.58 x 10-6 —F 0.5 % 10~
B 1,32 x G 2,11z *

c 0.32 x " H 1.05 ¢ ¢
D .00 1 0.0Bx *

E 1.18 x * 3 1.12x "

um

] 10. 52 X 12’5
= 1, 032 x 107

{(3) Prom these results, it can be seen that the probability
1s about one in 100,000 that during any 12 month pericd
an object from the installetion may impact at the target
site, located near point (E,14), and do damage at an
unacceptable level,

S. Constructing the Heference Point and Contour NMaps

a. By using the procedures of section 5, it is possible to assign a
probability to every reference point on the map, and it is quite
possible that a map with the level of risk recorded at each reference
point is all that a user will want. Such a map is illustrated by

figure 3.
Y. If a contour map is desired, proceed as followss

(1) Determine the probabilities desired to assign to each
contour line.

(2) Locate the adjacent reference points, with probabilities
Just greater than and just less than that of the contour
lines being considered.

(3) By appropriate interpolation (probadbly logarithmic), determine
where the contour lines should lie between these ref, points.

(4) Connect these points by ruler and french curve and thus
construct the contour lines,

c. Figure 3 1llustrates how the reference points can be labeled,
showing the risks of imoact and serious damage at each of these
points. Than, using the reference points as a guide, a contour
nap has been superimposed upon the map of the region. If the
labeled reference points appear to be most useful, it will be
unnecessary to construct the contour lines.
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6, confidence Limits.

A sreat deal of additional study is needed to develop
improved procedures for determining confildence limits for risks
at desired points throughout the region surrounding the military
installation. Pages 9, 11, and 12 of the original report discuss
how a modification of the procedures of "propagation of errors"”
may be used to obtain sstimates of the upper confidence limits
for the risks. References 4, 5, and 6 discuss the methods of
proparation of errors. It is hoped, however, that better methods
than propazation of errors will someday be found,

7. How Safe 1s Safe gpough?"

a., When 1t is indicated from a study that the risk at some point
is some figure (one in 100,000 for example), the user is likely
to ask several questions about this figure, includings

(1) What does this level of risk mean?
(2) Is this level safe enough?
(3) Why should we accept any risk?

b. The following suggestions may help in answering some of the
questions of the users.,

(1) Risks from a military installation may be compared to
risks that occur in every day life, To make these
comparisons, such publications as "Acoldent Pacts®
(see reference 12) may provide some useiul information.
For example, about one out of every 400U Americans will
die as a result of a motor vehicle accident within the
next 12 months, and one of every 100 Americans can expect
to receive a disabling injury from the same source,
Thus, if 1t can be shown that the operations from the
installation are very much less than the risks from the
dally use of the American automobile, this may be
convincing.

(2) Perhaps risks can be reduced to economic terms. For
exanple, 1f a plant is worth 10 million dollars, and
the annual risk is one in 100,000. This would indicate
a risk of only $100 per. year. Thus, insurance may be
available to cover such a risk.

(3) Pinally, when users are reluctant to accept any risk, it
should be pointed out that some risk is associated with
every actlivity carried on by the human race. Thus, it
1s necessary to find ways to reduce the risk of all
activities to an acceptable level,
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9.

Raferencess

1. Owen, D.B. Handbook of Stntistical Tables 1962, addison
Wesley Publishing Co., Ince. Reading, Mnss. Noteg

P. 184, a function for comnuting bivariate normal
probabilities. (this table is especlally useful
ir rxy f 0)0

P. 170, Criticnl values of the Circular Normal Distridbution.
(Thiz table can he useful for computing circular or
elliptical footprints)e.

The next two reports can be useful in dotermining the capabllity of
targets to withstani impact from an objeact. NKote Aprendix B.

2, Kennedy, R.P. A Review of Procedures for the Analysis and Design
of Concrete Structures to Resiat Missile ITmnact Kffects.,
Nuclear Bnzlineerins and Design, Vole 7, 1970, P. 183+-203
North Holland Publishing Co.

3., Sturctural Analysis and Design of Nuclear Plant Facllities.
Prepared by the %d&tlng Board and Task Groups of the Commlttee
of Structures and Materials of the Structural Division of the
American Soclety of Civil Bngineers, J.D. Stevenson, Chalrman
of Tiitins Board and Task GCroup, Note especially the chapter
written by R.P. Kennedy.

The next three references can be useful in getting a backzgroumd in
the theory of propagaticn of errors,

4, Scarbrough, James B., Numerical Mathematical Analysis, 6th Edition,
1966, Johns Hopkins Press, Baltimore, Md.

5« Ku, Harry H., Notes on the Use of Propagation of RBrror Formulas,
1965, National Bureau of Standards Heport no. 901i1.

6. Hahn, Gerald J. and Shapiro, Samuel 8,, Statistical Models in
Engineering, 1967, John Wiley and Sons, New York (note P, 252-255)

The next report can de useful in obtaining daily risks to 1life ard
health in many occupations and in just ordinary living. This
information may be useful in comparing with risks obtained from
special studies. Note section 8, p. 12, of this report

7. Accident Facts, published yearly by the National Safety Council,
G23 N. Nichigan Ave., Chicago, 111, 60611
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THE 1980 SAMUEL S. WIlKS MEMORIAL MEDAL
Frank E. Crubbds

The Samuel S. Wilks Memorial Medal Award was initiated in

1964 by the US Army and the American Statistical Association,

and has been administered for the Army by the American Statistical

‘Association, a non-profit, educational and scientific society

founded 140 years ago in 11839. The Wilks Medal and Award is
given each year to a statistician ~ and a top-nc’ one! - and
is bgsed primarily on his contributions to the vancement of
scientific or technical knowledge in Army stat tics, ingenious
application of such knowledge, or successful ¢ tivity in the
fostering of cooperative scientific matters which coincidentally
penefit the Army, the Department of Defense, the US Government,
and our country generally. The Award consists of a inedal, with
e profile of Professor Wilks and the nam; of the Award on one
side, the seal of tlre American Statistical Association and the
name of the recipient on the reverse side, and a citation and
honorarium related to the magnitude of the Award funds, which
were generously donated by Phillip G. Rust of the Winnstead
Plantation, Thomasville, Georgia. Mr. Rust originally stimulated
the interest of Sam Wilks in distributional properties of the
"extreme spread” (bivariate range), a measure of the “accuracy"
of rifle shot on a target.

These annual Army Design of Experiments Conference, at which
the Wilks Medal is awarded each year, are sponsored by the Army
Mathematics Steering Committee on behalf of the Office of the

Chief of Research, Development and Acqguisition, Department of the

Army. 111




BIOGRAPHY OF THE RECIPIENT OF THE 1980 SAMUEL S. WILKS MEMORIAL MEDAL

by
Churchill Eisenhart

The 1980 Samuel S. Wilks Memorial Medalist {s an internationally recognized
authority on statistics whose leadership has contributed greatly to the adoption,
acceptance, and effective use of statistical thinking and statistical methods in
many areas of research and human affairs, in both the governmental and private
sectors, : ,

He was born in Philadelphia, Pennsylvania, on November 5, 1912. When three
years old, his family moved to the West Coast and lived successively in Berkeley,
Fresno, and Los Angeles, California, and Portland, Oregon, while his father,
primarily a physical anthropologist trained at Oxford under a Rhodes Scholarship,
with Ph.D. in Philosophy from the University of Pennsylvania, taught at the
University of California at Fresno State College, served with the California
Commission on Emmigration and Housing, and taught at Reed College.

At the age of 9, he had a newspaper route in Portland and wen a Thanksgiving
turkey for an unusually large increase in circulation. Recalling this at the
time (1962) of his appointment as Presfdent of the University of Rochester, he
safd: "I remember this partly because 1t was my first lession in pitfalls
of statistical measurement. The base set for measuring the growth of my route
was the month of August, and 1t was no feat at all to triple circulation when
the Reed College faculty returned from their vacations and especially when
hundreds of students arrived at the college. Most of all, I remember that turkey
because my father and I recefved it--alive--in downtown Portland and took 1t
home by streetcar.”

The family moved to Minneapolis, Minnesota 1n 1923 when his father joined
the faculty of the Department of Anthropology at the University of Minnesota.
As a boy 1n Minneapol{s, our Wi'ks Medalist became an ardent stamp collector,
tennis player and photographer. He organized a small stamp company, selling
stamps partly by mail but mostly to boys in the neighborhood. One of his best
customers was Richard M. Scammon, who was later to become Director (1961-1965)
of the U. S. Bureau of the Census and to serve with our Medalist on the
President's Commission on Federal Statistics.

Our 1980 Wilks Medalist enterad the University of Minnesota in the fall
of 1928; majored 1n psychology with a minor in sociology, took nearly as much
work in mathematics and in philosophy, and gained valuable writing experience
as an editorial writer for the college paper, the Minnesota Daily, then known
as "the world's largest college daily”. His high scholarship 1e5 to his
election to Ph{ Beta Kappa, and to recefpt of his A.B. degree magna cum laude
in 1932 at the age of 19. A paper on "The Influence of Color on Apparent
Size" which he wrote during his junior year was published {n the Journal of
General Psychology, Vol. 13 (1935) and has been reprinted in books of readings
in psychology.
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Shortly before graduation he decided on a career 1n economics, with
emphasis on mathematical economics and statistics. He remained at the
University of Minnesota for the academic year 1932-1933 to continue his study
of mathematics and to study economics and then moved on to the University
of Chicago, where he held a University Fellowship in the Department of Economics
from 1933 to 1935. It was at Chicago that he began 1ife-long friendships
with Milton Friedman and George J. Stigler (father of the present Theory and
Methods Editor of the Journal of the American Statistical Association). They

(and two other fellow students) selected, arranged, and saw through to
publication, the first book of Professor Frank H. Knight's essays, The Ethics
of Competition (Harper & Brothers, 1935)--an early instance of our Medalist's
drive to see worthwhile materfal formally published in the open 1iterature.

He spent the academic year 1935-1936 as Granville W. Garth Fellow in
Political Economy at Columbfa University, where he studied with, among others,
Wesley C. Mitchell, one of the most eminent of American economists, doyen of
American business cycle analysts, the 1918 President of the American Statistical
Assocfation, co-founder (1920) and director of research of the National Bureau
of Economic Research (an independent non-profit organization), etc., and
especfally with Harold Hotelling, a pioneer in mathematical economics,
econometrics, and multivariate statistical analysis, and the person in the
United States then most versed in R. A. Fisher's theory of small samples and
statistical inference. Furthermore, this was the year in which Hotelling
revealed the potential of systematic treatment of functions of the relative
ranks of sample observations as a basis for what are now termed "distribution-
free" or "non-parametric" methods of statistical inference, through his joint
paper with Margaret Richards Pabst, "Rank correlation and tests of significance
involving no assumption of normaifty”. Presented at the New York meeting of
the American Mathematical Society on October 26, 1935, and published in the
March 1936 {ssue of the Annals of Mathematical Statistics (Vol. 7, 29-43),
this paper marked "the true beginning" of research on such methods as "an
important special field of statistics” (I. Richard Savage, JASA, Vol. 58,

p. 844, December 1953). Hotelling himself, his teaching, and his research

exerted a far reaching influence on our 1980 Wilks Medalist's career in

statistics as will become evident as we proceed. For the moment we may

note simply that our Medalist's first statistical paper, "The Poisson Distributfon
and th2 Supreme Court", published in the June 1936 issue of JASA (Vol. 31, 376-380)
was wiritten as a course paper for Hotelling.

During the summer of 1935 and the academic year 1936-37, our 1980 Wilks
Medalist was an economist for the National Resources Committee, a New Deal
agency in Washington, D.C. Milton Friedman was there also, and while there,
wrote his paper, "The use of ranks to avoid the assumption of normalit
implicit in the analysis of variance" (JASA 32, 675-701, December 1937) in
which he thanks our Medalist for bringing to his attention a more informative
method of handling tied ranks. While serving with this Committee, our Medalist
co-authored a book on estimates of consumer expenditures in the Unfted States
for 1935-1936, and worked on an article on the temporal stability of consumption
that saw publication in 1942,

Vv e mr———.
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His first teaching appointment was as Instructor in Political Economy at
Yale University in 1937-38. "The high-point of that year," he has said, "was
getting to know Irving Fisher who was especially hospitable because of my
interest in mathematical economics, a field in which he had pioneered forty
years earlier."

In the fall of 1938 our Wilks Medalist joined the Department of Economics
at Stanford University, an association that continued, with extensive interruptions, :
until 1946. At Stanford he taught courses in economic theory, mathematical {
economics, and advanced statistics. His first contribution to statistical
methodology, "The correlation ratio for ranked data", published in the September
1939 {ssue of JASA (Vol. 34, 533-538), grew out of consulting he did with a
psychologist during his first year at Stanford, and anticipated, or perhaps we
should say paralleled, independent work by M. G. Kendall and B. Babington Smith,
published in the September 1938 {issue of the Annals of Mathematical Statistics
(Vol. 10, No. 3, 275-287--our Medalist's "rank correlation ratio", n.e 15 exactly

their "coefficient of concordance", W. A dozen years later, at the University @
of Chicago, he returned to consideration of methods of analysis of ranked data
as means of avoiding the implications of the normality assumption underlying
many common statistical tests, and with W{lliam H. Kruskal prepared a compre-
hensive treatment of the "Use of ranks in one-criterion variance analysis",
published in the December 1952 issue of JASA (Vol. 47, 583-621), in which they
introduced thefr now widely used H test, thus desfgnated in honor of Hotelling.

During 1939-40 and the last half of 1941, our 1980 Wilks Medalist was a
Carnegie Research Associate at the National Bureau of Economic Research (NBER)
in New York City, on leave of absence from Stanford; and took advantage of the
proximity of Columbia University to attend the lectures there of Abraham Wald,
newly arrived (1939) from Austria. At the NBER he was closely associated with
Arthur F. Burns (later Chafrman, President's Council of Economic Advisors;
Chairman, Board of Governors of the Federal Reserve System, etc.), Wesley C.
Mitchell (mentioned above), Frederick C. Mi11s (1934 Prestdent of the ASA;
and author of a statistical methods text, the second edition of which 1n 1938
incorporated many of the new 1deas and methods of R. A, Fisher and was used
widely by students 1n economics, business and other fields), and Geoffrey H.
Moore (who later became the 1968 President of the American Statistical
Association and Commissioner 1969-1973, of Labor Statistics, U. S. Department
of Labor.) Analysis and interpretation of economic time series occupied center
stage at the NBER, With Moore he published A Test of S1gn1f1cance for Time
Series and Other Ordered Observations (National Bureau of Economic Researc
TechnicaY Paper 1, September 1941, 50 pp) in which they developed a test for
randomness, relative to efther a monotonic or oscillatory trend, based on
the distribution of length of runs up and down; and two articles (with Moore)
in JASA, "A significance test for time series” (Vol. 36, 401-409, September 1941),
and "Time series significance tests based on signs of differences" (Vol. 38,
1953-1964, June 1943). The first provided a brief summary of the Technical
Paper, with examples of the application of the test developed therein; the
second, an alternative but not independent test based on the total number of
runs1up1and down. These two tests are today standard tools of nonparametric
statistics.
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At NBER, he also carried out much of the research embodied in his paper
"Compounding probabilities from independent significant tests", publi{shed in
the July-Oct. 1942 issue of Econometrica (Vol. 10, Nos. 3&4, 229-248), in which
he gave a clear mathematical exposition of the basis of R. A. Fisher's procedure
for combining “s1?n1f1cance probabilfties" ylelded by independent statistical
tests having continuous probability distributions (Fisher, Statistical Methods
for Research Workers, Fourth Edition (1932), Sec. 21.1)--the basis of which was
a mystery to many Individuals and incorrectly explained by others--and provided
the requisite mathematical extension to cases in which at least one of the
"significance probabilities" is obtained from a statistical test having a discrete
probability distribution such as, for example, a rank or run test., At that time,
too, he was co-author with Milton Friedman of a paper on the empirical derivation
of indifference functions which saw publication in 1942.

Our 1980 Wilks Medalist returned to Stanford University for the first half
of 1942. The United States was then at war with both Germany and Japan, so
rationing and price control were matters of paramount concern. Our Medalist
responded by writing a paper, "How to ration consumers' goods and control their
prices", pubiished in the American Economic Review later that year. Then,
on April 17, 1942 our 1980 WiTks Medalist wrote to W. Edwards Deming (then
Head Mathematician, Mathematical Advisor, U.S. Bureau of the Census? stating
that he and several of the others teaching statistics in various departments
of Stanford considered 1t "probable that a good many students with research
training might by training in statistics become more useful than in their present
work, or might increase their usefulness within their present fields" and asked
for Deming's advice on the development of "a curriculum adapted to the {mmediate
statistical requirements of the war". Deming responded by April 24, 1942, on the
letterhead of the Chief of Ordnance, War Department, suggesting a concentrated
effort--a "short" course followed by a "long" course on Shewhart methods of
quality control, the short to be "for executive and industrial people who want
to find out some of the main principles and advantages of a statistical program
in industry"; the long course for "people who actually intend to use statistical
methods on the job; "both courses [to] be thrown open to engineers, inspectors,
and industrial people with or without mathematical or statistical training".
(Portions of both letters are reproduced on pages 320-321 of the June 1980
{ssue of JASA.) 1In one of the paragraphs not reproduced, Deming points out
the relevance of Wallis and Moore's work to statistical quality control, adding:
"The theory of runs and patterns is destined to recefve a great deal of attention
from now on, and 1t 1s a pleasure to see the superb effort that you and Mr. Moore
have put forth."

The impact of Deming's suggestions was such that by May 1st, Holbrook
Working (Statistician and Economist at the Stanford Food Research Institute,
and Chairman of the University Committee on Statistics) had arranged a general
meeting of everyone in statistics; a first letter about the course went out on
May 21 to firms in the Western states that were supplying Army ordnance; and in
July 1942 the first course was given at Stanford, by Working and Eugene L. Grant
gof the Engineering School.) Our Medalist had been scheduled to teach this course
with Grant), and had been "beginnfng to wonder how to learn what [he] was supposed
to teach", when he was asked "to head up an economic research unit i1n the Office
of Price Administratfon” in Washington. So he dropped out and was replaced by
Working. The course was such a success that early in 1943 Working was chosen
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to head the now famous major national program that put on intensive 8-day )
courses in statistical quality control throughout the country, under the auspices
of the Office of Production Research and Nevelopment of the United States Office of
Education. By March 1945 these had been attended by more than 1900 persons

from 678 industrial concerns in the United States and 13 in Canada. Many

of the "students" in the earlier of these courses went out to serve as
"{nstructors" in part-time courses that brought the message to an additional
3,100 persons 1n American and Canadian industry. This program had an enormously
beneficial effect on the quality and volume of American and Canadian war
production; and "prepared the soil" for the establishment of the American

Society for Quality Control, in February 1946, That our 1980 Wilks Medalist
played a role in initiating, and came so close to participating in this very
effective venture was a secret well kept from many of us until we saw mention

of 1t in the June 1980 issue of JASA.

Our 1980 Wilks Medalist never made it to the OPA position in Washington.
Before his appointment to that position became official, he received a telegram
from Warren Weaver, Director (Natural Sciences) of the Rockefeller Foundation
(1932-1955) then up to his ears 1n support of the war effort as Chairman (1940-42)
of Section D-2 of the National Defense Research Committee (NDRC) of the Office
of Scientific Research and Development (OSRD). Weaver, whom our Medalist has
described as "one of the most remarkable, admirable, brilliant, sagacious and
civilized human beings on the American scene in the past half-century" had
perceived an urgent need for a concentrated effort focused on resolution of
the various mathematical and statistical problems that were arising in the several
armed services and suppliers of their material, and especially those problems
that were arising more or less simultaneously in different places with, as he
put 1t, "the same verbs but different nouns"; and was engaged in setting up
several mathematical and statistical groups to do the "spade work" of the soon
to be established Applied Mathematics Panel of the NDRC, of which he was to be the
Chief (1943-46), and Thornton C. Fry (of the Bell Telephone Laboratories), the
Deputy Chief. Wilks had suggested to Weaver the establishment of a statistical
group at Columbia with Hotelling as Principal Investigator, and Hotelling had
brought our 1980 Wilks Medalist to Weaver's attention. Thus it came to pass
that on July 1, 1942 our Medalist assumed his first administrative post, Director
of Regearch of the Statistical Research Group (SRG) at Columbia University in
New York City.

SRG got off to a start with just three experienced researchers or "principals”
as he terms them in his article "The Statistical Research Group, 1942-45" {n
June 1980 issue of JASA (Vol. 75, 320-330): Hotelling, our Medalist, and Jacob
Wolfowitz, another Tormer student of Hotelling. Before its dissolution on
September 30, 1945 the number of "principals"” had risen to 17--or to 18, {f
Frederick Mosteller is included, who though actually on the payroll of another
group, worked closely and extensively with this SRG for essentially one full
year and co-authored two of fts books and co-edited one of these. (The names
of all 18, with their respective lengths of service with SRG, are 1{sted on
page 324 of our Medalist's aformentioned article.) These "principals" were
supported at one time or another by about 60 others: typists, secretaries,
a switchboard operator, an administrative assistant, a librarian, a messenger,
and about 30 young women, mostly mathematics graduates of Hunter or Vassar, who
did the necessary computing under the direction of Albert Bowker. The "principals"




worked on problems of tactics, equipment, and operations for the Army, Navy,
the Afr Force (which was a branch of the Army in World War II), and other units
of OSRD. Many of these activities stemmed from AMP studies assigned to SRG,
but a large number stemmed from consultation with and informal assistance to
Army, Navy, or NDRC groups. Sometimes one problem would lead to a related
qrobIem in another setting, or experience with a particular technique would
ead to another application of the technique to an unrelated problem.

Our Medalist mentions in his article a great number of the military problems
on which SRG worked, so there 1s no need to gfve such details here. The most
famous, and probab1¥ the most influential and lasting contribution was, of
course Abraham Wald's development of sequantial analysis, full instructions
and tables for the practical application of which saw open publication in

Sequential Analysis of Statistical Data: Applications (Columbia University
Press, 1945); and the theoretical development, In Wald's book Sequential Analysis

(Wiley, 1947). Our Medalist in his article gives two accounts of the history
of sequential analysis, one written in April 1943, soon after the development;
and the other written from memory in March 1950, when the 1943 memorandum could
not be located. Both accounts bring out clearly the essential roles of our
Medalist and Milton Friedman in getting the development "off the ground"

after they had recognized its possibility of achievement.

Although SRG was formally dissolved on September 30, 1945, our Medalist
stayed on until March 31, 1946 to make sure that some of SRG's other wartime
contributions achieved open publication in a unified form creditable to both
the 1ndividuals concerned and SRG. Although he 1isted himself alphabetically
as the third editor of Selected Techniques of Statistical Analysis (McGraw-Hill,
1947), and alphabeticaiTy as the 7ourta of the editors of 5amp|1ng Inspection
(McGraw-Hi111, 1948) he was in fact the Editor-in-Chief for both.

As Director of Research of SRG, our 1980 Wilks Medalist brought together
an absolutely extraordinary group of research workers in statistical theory
and methodology, in both number and quality. The experience of working in SRG
contributed significantly to the subsequent careers of a substantial number of
the “"principals". Many became leaders in statistics in the next chree decades.
Four became President of the American Statistical Association: Bowker (1964),
our Medalist (1965), Mosteller (1967), and Eisenhart (1971). Seven became

President of the Institute of Mathematical Statistics: Wald (1948), Girshick

21952 , L. J. Savage }1958}, Wolfowitz (1959), Bowker (1962), Herbert Solomon
1965) and Mosteller (1975)--Hotelling had been President in 1941. Mosteller

1s the 1980 President of the American Association for the Advancement of Science.
Friedman received the Nobel Prize in Economics for 1976. At least nine
subsequently became chairmen of university departments of statistics: K. A.
Arnold, Bowker, Girshick, Hotelling, Mosteller, Savage, Solomon, Wald, and our
Medalist. Two became heads of major universities: Bowker (of two: City
University of New York and University of California at Berkeley), and our
Medalist (University of Rochester). Three received the Samuel S. Wilks Medal:
Solomon (1975), Eisenhart (1977}, now this year's Medalist.
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The influence of SRG continues through the work of its "principals" alive
and deceased (Girshick, Hotelling, Savage, Wald) and through the statistical
tools developed at SRG, theoretical and practical, which have become established
parts of statistics. Several effective statistical consulting groups have since
been modeled on SRG, notably those at the Bell Telephone Laboratories and at
the National Bureau of Standards. But even today it 1s probably not saying too
much to say that SRG was the best statistical research and consulting group ever,
Those who worked there know this to be the consequence of the high standards of
excellence established, maintained, and insisted upon by its Director of Research,
our 1980 Wilks Medalist.

After all that, whatever more is said 1s bound to be anticlimatic, but needs
to be said nonetheless to round out the record and give the full picture of
this champion of statistical theory and methodology.

In the Spring of 1946 our Medalist returned to Stanford University as
Associate Professor of Economics, and immediately instituted steps toward the
establishment of a Statistics Department there. However, before that department
came into being, he had left in the Fall of 1946 to join the University of
Chicago as Professor of Statistics and Economics in the Graduate School of
Business. (Later he was also named a Professor in the Department of Economics,
in the Division of Social Sciences). 1In 1949, he became Chairman of the newly
formed Department of Statistics in the Division of the Physical Sciences, a post
he held until 1957. During his chairmanship, the Department of Statistics at the
University of Chicago tecame one of the outstanding departments in {ts field in
the world a position that it still retains. (In addition, he played behind-the-
scenes roles in the establishment of Department of Statistics at Columbia
University, Harvard University, and the University of Rochester, making a total
of five whose establishment he Influenced in minor to major ways.) In 1956 our
Wilks Medalist was appointed Dean of the University of Chicago's Graduate School
of Business, became financially self-supporting while tripling its annual
expenditures, and came to be widely recognized as one of the Nation's very best.

There {s an amusing side to our Medalist's appointment to his first tenured
professorship at the University of Chicago. He has no so-called "earned degrees"
beyond his 1932 A.B. from the University of Minnesota. He had satisfied nearly
all the requirements for a Ph.D,, some at the University of Chicago, others at
Columbia University; had had two thesis accepted; but before he had completed the
remaining requirements at the University of Chicago, he was appointed a professor
with permament tenure there and became ineligible under that university's rules
to receive an advanced degree from it. He has, however, received three honorary
degrees, Doctor of Science from Hobart and William Smith Colleges (1973), Doctor
of Laws from Roberts Wesleyan College (1973), and Doctor of Humane Letters from
Grove City College (1975).

While at the University of Chicago, our 1980 Wilks Medalist published a
number of noteworthy papers on statistical methodology. The first was a long
paper, "Standard sampling-inspection procedures", presented at the 265th Meeting
of the International Statistical Institute at Washington, D.C., in 1947 and
published subsequently in 1ts Proceedings, Vol. 3, 331-350. This was essentially
an exposition of the basic principles and state of the art of acceptance sampling
procedures as spelled out in more detail in the SRG book, Sampling Ins ection
(1948), then in press. Next was a basic paper, "Tolerance 1n%erva1s for Tinear
regression”, presented at the Second Berkeley Symposium on Mathematical Statistics
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and Probability at Berkeley, California, in the summer of 1950, and published in
its Proceedings, 43-51. '"Rough-and-ready statistical tests", published in the
March 1952 Tssue of Industrial Quality Control (Vol. 8, No. §, 35-40) was a
composite and updated version of soma notes on these matters made available

to SRG staff during WW II, updated to include some of the material to be
published in the forthcoming (1952) joint paper with W. H. Kruskal, "Use of
ranks in one-criterion analysis of variance", mentioned earlier. With Harry V.
Roberts (an Associate Professor of Statistics in the Schoo! of Business) he
co-authored Statistics: A New Approach (The Free Press, 1956), an 84-page
work that became a widely used text In English speaking countries and saw
translation into German (1959) and Portugese (1964). A paperback version

of the first quarter was issued by Collier Books (1962) under the title,

The Nature of Statistics, and has been translated into Swedish, Danish,
Norwegian, and Japanese.

In addition, while at Chicago, our 1980 Wilks Medalist served as the
Editor of the Journal of the American Statistical Association for nearly a
decade, 1950-1959. During 1955 he chaired an Tnner-University study group
formed under the aegis of the University of Chicago, and funded by the Ford
Foundation, to reach a decision on the desirability of a new or revised
edition of the Encyclopedia of the Social Sciences (that had been published
in 15 volumes by tﬁe MacmITTan Company between 1330 and 1935. (The study group
included members from the University of California at Berkeley, Harvard University,
University of I111nois, Reed College, and Princeton University--see David L.
S111s, "Editing a Scientific Encyclopedia", Science, Vol. 163, 1169-1175, 14 March
1969.) The project layed dormant for five years, until late 1960, when the
Macmillan Company decided to publish a new encyclopedia of the social sciences,
The International Encyclopedia of the Social Sciences (IESS), which saw
pubTication In 17 voTumes by the MacmiTlan Company and The Free Press in Apri
1968. Our 1980 Medalist served as Chairman of the Editorial Advisory Board,
and as Chafrman of the Executive Committee, for this vast undertaking. Unlike
1ts predecessor and other encyclopedias, the IESS contains a great many
articles on statistical concepts, theory, and methodology, together with
biographies of a host of individuals who made significant contributions to
statistical thinking and practice, excluding those sti1l alive in the 1960's.
Consequently, anyone wishing to know something about the contemporary state of
statistics--concepts, theory or methodology--or about their historical development,
found this encyclopedia a most useful source. It proved so useful in this regard
that the articles on statistics and articles relevant to statistics published in
the IESS were brought up to date by the addition of Postscripts or by revision
in whole or in part, and republished together with a few additional articles and

blographies, as the Interhational Encyclopedia of Statistics, two volumes, by
The Free Press in 1978,

Our 1980 Wilks Medalist became President, Professor of Economics and
Statistics, and Trustee of the Unfversity of Rochester in 1962. His title was
changed to Chancellor in 1970, 1In 1975, in anticipation of retirement, he
turned over the chief executive responsibflities but remained in administration.
In 1978, he retired as an officer of the university but continues there with
the same title, Chancellor.
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He has been a director of Bausch & Lomb, Inc., since 1963, Eastman Kodak
Compan¥ since 1965, Lincoln First Banks, Inc., since 1967, Macmillan, Inc.,
since 1964, Metropolitan Life since 1973, Rochester Telephone Corporation
since 1964, Standard 011 Company (Ohio) since 1977, and Trans Union Corporation
since 1962; and was for fourteen years a director of Esmark, Inc., (1963-1977).

He was a consultant to the RAND Corporation from 1948 until 1966; a member
(1952-1953) of an advisory panel to the Secretary of Army on operations research;
a member (1969-1970) of the President's Commission on an A1l Volunteer Armed
Force; Chairman (1969-1978) of the Commission on Presidential Scholars, and
Chairman (1970-1971) of the President's Commission on Federal Statistics, as
well as a member of chairman of various other Presidential or national commissions
and councils. The present-day Committee on National Statistics of the National
Research Council was established on the recommendation of "his" President's
Commission on Federal Statistics to grapple with and help resolve conflicts
over statistical aspects of such national problems as environmental monitoring,
presentation of statistical evidence in court, effect of changes in stratospheric
ozone on incidence of skin cancer, and recently the 1980 Census undercount.

Even more could be said about this Wilks-11ke individual, but the foregoing
is more than sufficient to explain why the 1980 Samuel S. Wilks Memorial Medal
is awarded

To W. Allen Wallis in recognition of his extraordinary
contributions to the effective use of statistical theory
and methodology by the armed services during World War II,
for his outstanding contributions to clear statistical
thinking and effective statistical practice through

the publications he authored or edited, for his leader-
ship of statisticians, and for his service to the nation
through chairmanship of, or membership on numerous high-
1eve11$overnmenta1 and non-Governmental commissions and
councils.
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OPTIMAL ESTIMATION TECHNIQUES FOR
FORECASTING PROPAGATION PARAMETERS

K. E. Kunkel and D. L. Walters
Atmospheric Sciences Laboratory
White Sands Missile Range, New Mexico

ABSTRACT

The prediction of stochastic atmospheric variables such as wind
and temperature on time scales of 6 hours down to a few seconds is
being attempted. The statistical problem is to find the optimal esti-
mation technique that combines the existing climatological data base
with current measurements to provide the best real time forecast.
An autoregressive technique has been attempted but yields results
which reduce the error by only 10% over persistence forecasts. Panel
recommendations indicate that mixed autoregressive-moving average
techniques and Kalman filter techniques are the most promising to
attempt.

1. INTRODUCTION

An important goal of meteorology is to accurately predict the
state of the atmosphere at some time in the future. For the large
scale features of the atmosphere, this can be done in a quasi-deterministic
(if somewhat inaccurate) sense by predicting the movement of large
scale weather systems. However for some purposes, such as predicting
the optical propagation characteristics of the atmosphere, it is neces-
sary to know the small scale, or turbulent, nature of the wind and
temperature fields. The problem that we wish to address here is the
prediction of stochastic atmospheric variables for time scales of six
hours down to a few seconds.

I1. DATA DESCRIPTION

An example of the kind of parameter that needs to be predicted
is the temperature near the surface of the earth. Fig. 1 shows a time
series of temperature for a 15 min perfod at heights of 3 and 33m.
This figure 11lustrates the stochastic nature of the variable. In
general, the short time scale varfations cannot be predicted determin-
istically. However, the data can be characterized in a statistical
sense. The following are typical characgeristics of the data:
13 non-zero, non-stationary mean -5/3
2) The power spectral density follows a k behavior (k = wave-
number) for k > km1n where km1n is some wavenumber scale of the flow.

For k « kmin’ the power spectral density has no definite shape. Fig. 2

shows the power sgectral density for temperature at 3 and 33m above
ground. The k-5/3 behavior is exhibited for log k > -1.5. Assuming
ergodicity, k can be related to the frequency domain by k = 29f/0
where f = frequency and U = mean wind speed.
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Figure 1. Time series of temperature (°C) at heights of 3m (solid)
and 33m (dotted).

2. .

-

§

N

3 | \’W\A

o \ td

~ .

~ :

N © .

& -l

-

(8}

&

n -2 .

g -

&

4 -3 33
-4, i 1 L J
-3. ~2. -1, o. 1.

LOG OF WAVENUMBER

Figure 2. The 10910 of power spectral density of temperature vs. log

of wavenumber at hefghts of 3m (solid) and 33m (dotted).
Units of wavenumber grs rad/m. Dashed 1ine show a power
spectra) density « k=>/3 dependence.

3) Low frequency trends are often present. These are usually
tied to the daily cycle of heating and cooling and occur at frequencies

in the range 1074 21075 5.

There are two sources of data available that can be used as the
basifs for making a prediction. These are:

1) Climatological data base. These data provide general character-
fstics of the data in the past. These include low frequency trends




r
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tied to the daily cycle and typical expected power spec.ral levels as
a function of time of day and other external factors.

2) Measurements taken on the current day.
The problem then becomes to predict a stochastic variable given clima-
tological data and present measurements. -

II1I. RESULTS

One attempt has been made to solve this problem by using an adap-
tive linear prediction filter similar to one described by Keeler and
Griffiths (1977). This {s an autoregressive approach and can be briefly
summarized as follows. If x is the variable (with mean removed) to be
predicted, then the prediction at time t, xp(t). is given by

1
xp(t) =I g, x(t - 1at)

i=]

where x(t - ist) are measured values, st {s the time interval, and g,
are weighting coefficients. The prediction error E(t) is given by

E(t) = x(t) - xp(t)

Since in general we don't know how to calculate a prior{ the coefficients
gy We allow the coefficients to be changed as data is collected in

order to provide the minimum mean square error. An algorithm is used ~
which updates the coefficients as each measurement sample is collected
by using the method of steepest descent. This {s given by

g;(t+ At) = gi(t) + wE(t) x(t - fat)

where

2
o, = variance of x
a = constant which determines rate of convergence
This type of alyorithm was applied to a number of data sets with At
ranging from 10 secs to 15 min. The predictions were compared with
predictions based on persistence, i.e.,
xp(t) = x(t - at)
By using a wide range of o and 1 values, the best we could do was

to decrease the mean square error by 0-10% over persistence. This {s
not very encouraging.
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IV. QUESTIONS
ur questions to the panel are:

1) Given the nature of the data, can we predict these quantities
significantly more accurately than by simply using persistente or the

climatological mean? .
2) What are the Yimits of predictability? Can these limits be

calculated?
3) What prediction technique is 1ikely to be most successful for

this problam? Possible techniques that have been discovered in the
1{terature are: a) Autoregressive $a11-pole
’ b) NMNoving average (all-zero)

¢) Mixed pole-zero (Box-Jenkins)

d) Kalman type filter

V. PANEL RECOMMENDATIONS -
e problem 15 a cult one and may not be amenable to sclution.

However, two techniques should be attempted. One {s the mixed autore-
gressive moving average technique (Box-Jenkins) for which software
packages exist. The other {s the Kalman filter technique.

REFERENCES

Keeler, R. J. and L. J. Griffiths, 1977: Acoustic doppler extraction by
adaptive linear-prediction filtering. J. Acous. Soc. Am., 61,

1218-1227.
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SOME RESULTS I'OR THE UNIVARIATE NORMAL RANDUOM

LINEAR REGRESSION MODEL PREDICTION THEORY

D. G. Kabe
New Mexico State University, Las Cruces, New Mexico
and

St. Mary's lniversity, lHalifax, N.S., Canada

ABSTRACT. Optimal prediction, within the normal theory framewgrk, of one
vector variable by the linear functions of another correlated random vector
variable, when certain values on the predicted variables are missing is con-
sidered. The optimal predictors are derived by using both the conditional
cxprctation minimization theory and the canonical correlation theory. However,
the muximum likelihood estimators of the unknown parameters are derived only

for the canonical correlation theory.

1. INTRODUCTION. This paper presents some of the author's discussion (as one

of the panclists) on tie followinﬁ two papers presented at the twenty-sixth
United States Army conference, on Design of Experiments, hcld at New Mixico
State University, 22-24, October 1980. The fifst paper, "Optimal Estimation
Techniques for Torecasting Propagation Paramcters,' was presentced by K. E. Kunkel
and D. L. Waltcrs of the United States Army, White Sands Missile Range, Now
Mexico; and the second paper, "A Stochastic Mesoscale Metcorologic Model,' was
prescnted by E. P. Avara of the United States Army, White Sands Missile Ranpe,
New Mexico. Both the papers studied the optimal prediction theory of one

vector variable by the linear functinns of annther corrclated random vector
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variﬁﬁle, and the secdnd-péper édnsideré&-sucﬁ théory when certain samble
values on the predicted variable were (misiing) undbservable‘ In his dis-
cussion the author pointed out some known results (the derivations given here
are different), within the normal theory framework, to the above problems.
The prediction of one vector random variable by the linear functions of
another correlated random vector variable, within the normal distribution‘theory
framework, is a very well known problem in statistical literature, and an
exhaustive paper on this topic is published by Scobey and Kabe (1980). The
two classical techniques often used for this purpose are: 1) the conditional
expectation minimization theory (CEMT), and 2) canonical correlation theory.
In brief we shall discuss these two techniques. Both are based on the fact

that for two correlated vectors x,y
E(y-f(x))'(y-f(x)) , (1)

is minimized when ©(ylIx) = f(x), and f(x) 1is the optimal predictor of v,
for a given x.

The knon results of CEMT sud canonical correlation theory (CCT) are
presented in the next section, prediction intervals are derived in section 3,
and missing values are considered in section 4.

Soietimes the same symbol denotes different quantities, however, its

meaning is made explicit in the context.

11, SOME USFFUL RESULTS. We first present the results for CEMT. Let y be

a q component vector (all vectors are column vector and all matrices are full
rank matrices) with E(y) = 0, E(yy') =L, E(x) =0, E(xx') =4,

E(yx') =B, B q=*p, x px1, psq, and then consider the minimum value

prohlenm

Cun vy R )

P
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Min {Min E [(y-Ax)'(y-Ax)|x])}
A X

= Min E {Min [(y-E(y]x))'ly-ECy}x))
A X

+ ((Ax=E(y X)) (Ax-EC(y ) [x1}

- which by using (1) may be written as

Min E {E(y-Ax)'(y-Ax)!Ix}, Ax = E(y'x)
A

However, (3) reduces to

Min E (y-Ax)'(y-Ax} = Min tr (I-ZAB'+AAA']
A A

= Min tr [Z-BE'8" » (A-BSY & (A-BEYY']
i
\

where A is q x p. From (4} ehviously

-1

A=BA, i.e., AL =B

is a nccessary condition for our minimization probleom,
Now we have to find that A. which vields (Z-AAA')  singular.

consider
Min tr {T-A2A')
A
to find the minimem of (2). By our assumption A siatisfics

0 = lz-Asar] = nora'ne!

whence a solution A to (7) 1s
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A~ = TA(Q' 0)', AAA' = Altltl ¢ L thptp , (8)

where
L =TAT = (tl’ ces tq) A (tl, cen, tq)'

= ! t
Xltltl ¢ L.+ Aqtqtq , (9)

and Al > .. 2 Aq are the toots of I and q x o T is the matrix of the

latent vectars of £, 7} p x p is any arbitrary orthogonal matrix. With A

given by (8), .« find from (6) that

Min tr {IZ-ABA'] = A LD W (10)
A

A
Now with A given by (8), we find it corvenient to denote Ax by y, and
A . . . . A .
say that v cptimally predicts y, for a given x (actually vy estimates
E(y!x)), t.e.,

1
A -1 2 a2 v A
Yy = Ax = BA'x, BA = AA =TAT(Q' O) . (11)

o) --

rf s

When A is given by (8), cquation (11) predicts y for a given x by CEMT,
Thus (8) implics that CEMT predicts v optimally by linear ‘unctions of «x

by assuming all canonical correlations between y and x are unity, i.e.,
from (8) the generalized variance of (x' ¥')' wvanishes. CEMT exactly follows

CCT cxcept that in CCT the cquation (8) is not satisfied. Thus CEMT deals with

the singular normal distribution theory and CCT deals with the nonsingular

normal distribution thcory. Since the results for the singular normal distribu-

tion follow exactly on rhe same lincs as for the nonsingular case, we consider

parametcr cstimation for CCT on!ly,
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In CCT A satisfies (5), and also (11), except that the second member
of (11) is now discarded. The p canonical correlations between y and x

are the positive square roots of
lp’z-8s8r| = 0, (12)

and the canonical variates of y and x corresponding to a particular ¢

are. £'y and n'x, wicre £ and n satisfy

022 -B £

=0 . 1.3)
-B' Al |n
If all the canonical correlations are zero, then y cannot be predicted by
linear functions of x. When all canonical correlations are unity, then vy
is a linear function of x, given by (11). When some canonical correlations
arc unity, and others hetween Zero and unity, then the prediction is to lLe
carried on partly by CEMT and partly by CCT. An example of such a case is

given by Kshirsagar (1962), and discussed by Scobey and Kabe (19080). 1If all

canonical correlations are between zero and unity, then the first member of (11)
holds and A catisfies (5), but not (7). When (12) holds a'y 1is optimally
predictes by & linear function of x onlv if a 1is proportional to £, where

§{ satisfies
2 o, _ -1
(0"L-BA'B')E = 0, and pE = L 'Bn . (18)

In this case

;
H

!
1
i
3
E|
5
i

1 1
Lol
Il f1-a8'2 8a" |

wudlar .

|-85'8"|

a
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If the mcans of y and x are not :zero, then (11) changes to
¥ = E(y) + Ax-E(X)) = F(y) + BE (x-E(x)) . (16)

Thus to predict y optimally by linear functions of x, the population
paramecters must be known. If the population paramcters are unknown, then they
are rcplaced by their maximum likelihood estimators, when a sample of size N

on (x' ;"' 1s availehle, Thus e.g., in the usual notation

i 1
- ~-1 - 1. '? ,.-]q -2—
151275515 11512] = 1S5, 11-51151,8555:,5 1,
. P A2
IS,,1 ™ (1-07) (17)
1=1
is the sample counterpart of (15), and
-] . N
=Y - 8 . 'z 3 - < N (]
U= Y -5, SOX, (S,.7%.,57 15217 (18)
is the maximum i1ike:.ihood estimator of
A - -1
V(iv-y) = V(v-Ax) = 7 - BA B' . (19)
However, the optimal properties of such sample counterparts arc not as vet .

fully 1nvoscigated in statistical literature.

11 PREDICTTON TNTERVALS.  We obtain prediction intervals for a single future

obscervation. These prediction intervals are hased on Rao's Ul statistic, sce
Kibe (18%08) .

Let a (peq) component vector (x',v")' have a  (p+q) variate normal
distribution with mean value u, and covariance matrix §. Then assuming u,T

to be partitioned corvrespondingly we have
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= -1 . -1 - '
E(ylx) = by - 2212“ul 221211" =n+B'x , (20)

as the lincar regression of y on x. The equation (20) is known as the
univariate random linear regression model. We take (y - 52l§;1;), and

B = §i1512 as the maximum likclihood estimates of n and B respectively,
where (x', y')' is the sample mean vector and S is the sample dispersion

matrix based on a sample of size N on  (x', ¥v'}'. If (x', v')' 1is any

futurc observation, then from (16) the predictor of v is

A —_ -1 -1
=y - S_..S ¢
Y Y S5 * t SaySpyx
=y +S s"(x-;) (21)
21711 '

The joint density of S and v = (x'-X', y'-y')' is

l . -~
-1 ,"T('\‘p‘(!’~)
[R+hyer]ilgts (o

» -=J

giS,v) = K exp (--L*r?
é

where h = N/(N+1), and K as a generic letter dcnoics the normalizing con-

stants of density functions in this papcr,

-1

Now partition S, v, L as,
r 1 Coo o1 137
] . “!
1St 12 | V1] 2 J |
_ | - !
S = l i Ve ’ L I | {23)
l 121 22|
Sar Sab _VzJ , |k ‘ :
and by setting
D=Ss s 'g w=v, -5 sl Ros g, s ) (24)
22 2t 2 21 P B R “

write (22Y as
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g(Su,D B,vyou) = Kexp {- ftrtn SR AL

1 . 22 ' t ' '

22(u¢(B-B)'Vl)}

 3(N-p-q-2)  F(N-peq-2) :
!'-" SII (25)
Now integrate out B and find the density of u, vie Sll’ and D to be
g(S;;,0,u,v;) = K exp (- trE“S“ - 5 tr2?p
1
2hvliuv1 - hu g? u/(l*hv1 11v )}
-3a, 3Wepeasd) o 3(ep-2)
(“ = £ - n’
(1+hv! Sll 1, LDy 'Sll‘ (26)
It now follows from (26) that
U = hu’D']u’(1+hv'9 Ly 2m
! 1 11 1 ' o
has the density
(N p)
"(q 2} 2 I8
e(U) = Kk v /{1eU)" : (28)

and hence the prediction intervals for y, for a given x, can be based on

(28).

IV. MISSING OBSERVATIONS. If a sample of size K (X' Y')' 1is now available

on (x',y')', and a sample of size (N-K), Nz Kz q+ 1 1is later availahlé

on (x',v')', then the relations between the maximum likelihood estimntors of
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the original sample and the total sample are available in the literature, see
e.g., Kabe (1967). The results given by Kabe (1967) can be easily modified to
suit the missing value prediction theory.

We now state the problem proposed by E. P. Avara and its possible solution
outlined by the author. The first sample is (X', Y'})' and the second sample
is (X}, 0Y', as no observations on y were recorded in the second sample.
The problem is how does the entire theory of optimal prediction be carried on
under suclk circumstances.

The fact that the problem of missing values forms a significant line of
research is known in the statistical literature. However, the extreme diffi-
culty involved in its mathematical treatment is the cause of its not being
thoroughly investigated as vet.

Let Xy denote the mean of the entire sample and x the mean of the first

K ob<crvations, If Sll' S]«. S,,, and Q;l, *;,. S*, arec the old arnd new

maximum likeliiond estimates of :11, Zl" 22, respectively, then a relation

between old and new estimates is desired. Obviously S (XVX&—NQEE'N)/N is
)

the maxtoun linelihood estimate of Further from (21)

‘11

YV s -1,= .y -
Y ¢+ RS, 8 %) (29)

is the predictor of ;&, and hence is the maximum likelihood estimate of [(y).
The constant h = K/(N-K) from Kabe (1967). To derive the relations between
the old and new maximum likelihood estimates we first consider the old data
representation. If U, = [I, 0], V = [0, I}, then the sample is represented

by
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1
2
X = S,U
Ll
-1 ST
Y 25,8 X % (S,,-5,,81,5,2)° V

21711

However, the entire sample must be represented by

1
2
X = * v
NSV
) 1
Y * 35 St \ N I+ 1'1' j r %
N 21711 \N + \522-52 Sll bl:) \

However, siuce there are no new obhservations on (32) must reduce to

1

= Qf -1 -1 P)
Y o= 85811 X * (855755848, V
}

Note that V and its coefficient do not change because Y does not

It follows from (31} and (33) that

5,871 = sy 807
2171 T2

and hence

is the maximum likelihood estimate of :’I' Again from (33)
“

-1 .
S* §* [ N _3 q § :
S350 512N P WSSy S8k

-

is the maxtmum tikclihood estimator cf V{y) = &

(30)

(31)

(32

(33)

change.

(34)

(35)

(36)

This rescarch is supportced by a National Rescarch Council of Canada

grant A-d4U018,
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ADAPTIVE MEDIAN SMOOTHING £

William S. Agee and Jose E. Gomez ¥

1 Mathematical Services Branch z

: Data Sciences Division i

: US Amy White Sands Missile Range E

:i White Sands Missile Range, NM 88002 1«
3] ABSTRACT. We have developed a robust data smoothing method which was : :
ti motivated by the necessity of extracting a small but nevertheless important . '

-+ signal which is imbedded in a large band of noise. It is assumed that x

nothing is known about the signal other than that it is of significantly
lower frequency than the noise in which it is imbedded. The noise variance
i may vary over a rather large range. The signal to noise ratio may also

S vary over a large range, sometimes the signal will predominate but usually
P the signal will be almost invisible in a2 large band of noise. We adapt

P Tukey's idea of using medians to smooth data for exploratory d=ta
I

analysis to develop our robust smoother for extracting this small signal
from noise. If Zk’ k=1, 2--- are the measured values of signal plus noise,

the smoothed values of this time series are given by

Yk = medjan (Zk-'l’ Zk_“_], i Zk"'i}

1=0,N

e Dbl iad Jhie e L6 A A

where N is variable and is made data dependent by choosing N as a function
3 of locally computed values of the signal and noise statistics. The
1 application of the rcbust adaptive smoothing technique is illustrated
k on some WSMR data sequences.

L

INTRODUCTION. Median smoothing has been strongly advocated by b
9 Tukey (1] and (21 as a tooi for exploratory data analysis. Suppose K

we have a noisy time sequence of measurements, X3 i=1,2,--- , which

we want to smooth. Median smcothing of this measuremeni sequence
basically means to compute a smoothed value at any time t1 by the median

of the measurements about ti’ Morc specifically, the smoothed value "
at time ti’ denoted by X is computed by

! X, = med {x,..) (1)
i §=0,N 14§

The smoother in (1) has a smoothing span of 2N+1 points.
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Several advantages of median smoothing are readily apparent. Median
smoothing is very simpic to implement since it only requires the use of
a subroutine which will order the measurements. Median smoothing does
not require the specification of a model of either the signal or noise,
i.e., it is a nonpar>-etric method as opposed to most other smoothing
methods. Median sm.oro"t., i robust. It tends to reject spurious values
or outliers in the -eas.-aeuts. An outlier or short burst of outliers in
the measurements wi.l rc* arpear in the smoothed output if the length of
the burst is smaller ti... ¥ 1 points. Median smoothing has been applied
to speech processing, [3] and [4], and to image processing, [5) and [6].
Our motivation for the development of an adaptive median smoothing routine
was for the smoothing of radar error signals.

SMOOTHING RADAR ERROR SIGNALS. Let Ro(ti), Ao(ti)’ and Eo(ti) be

the range, azimuth, and elevation output values of a radar at time ti when

tracking a target. These output readings specify a point in space at
which the radar is pointing. These values are usually close to the true
target range, azimuth, and elevation values, which we denote as R(ti),

A(ti). E(ti). The target tracking errors are defined as

rplty) = R(t,) - R (t))
aT(ti) = A(t1) - Ao“i) . (2)

eT(ti) = E(ti) - Eo(ti)

Measured values, r(ti). a(ti), and e(ti) of the tracking errors are

available. These measured values of the tracking errors are called the
radar error signals., These errors signais are usually very noisy compared
to their signal content. We want to obtain smoothed values,

;(ti)’ s(ti), and é(ti) of the radar error signals in order to construct

improved measurements, Rm(ti). Am(ti)’ Am(ti)’ of the targets range,
azimuth, and elevation.

R (ty) = R (t,) + r(t,)

A ()

Aj(t,) +alty) (3)

Eo(t) + é(ti)
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Medié; smoothing appears to be an immediately applicable method which
can be quickly implemented for the task of constructing smoothed values,

;(ti)’ S(ti). ;(ti) from the measured error signals, r(ti). a(ti), e(ti).

However, when one attempts to directly apply median smoothing to the
error signals, some common characteristics of radar error signals

reduce the quality of the smoothed output to such an extent that the
attempt is unsuccessful. A constant span median smoother cannot be
applied successfully to smoothing radar error signals because the

signal vs. noise content of the measurements varies over such a wide
range during a mission. Fig 1 gives an indication of this wide variation.
Initially, when the radar is acquiring the target, Fig 1 shows a rather
strong signal content as compared with noise. This portion of the
measurement sequence would require a short span smoother in order to
preserve the signal characteristics. In the later portion of Fig 1

the range of the target from the radar is increasing and the elevation
angle may be quite low resulting in a very large noise content relative
to any signal which may be present. This portion of the data would
require a large smoothing span in order to filter out the large amount
of unwanted noise. Thus, the characteristics of the radar error signals
force the use of a variable span median smoother where the span at time
t1 must be dependent on the relative content of signal and noise at

times near ti' We call the result an adaptive median smoother.

[RPVTOTIIY 3 T S

ADAPTIVE MEDIAN SMOOTHING. An adaptive median smoother is defined

by

x; = med {x;,. ), NMINSN <NMAX (4)
§=0.N,

The choice of Ni is based on the measured values, xj, where t‘j is near
ti' The maximum, NMAX, and the minimum, NMIN, values of Ni can be

specified by the general characteristics of the data and thru experience.
The definition given in (4) obviously does not specify how to obtain
smoothed values near the beginnings and ends of data sequences. At the
start and end of data strings we use the simplest possible smoothing:

START
-
§2 = med {x], Xp1 X3} (5)
xg = med (x4 f<MMIN

Jj=0,1-1
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END 3
¥ ~ . g
£ X oy ° med X o0 X 0 X} (6)
= X = med ({x .} 1<NMIN 1
. L-i j.o"- L‘1$J -
é :
In (6) the subscript L denotes the last point. g
METHODS OF ADAPTATION, In order to adapt the span of the median '§
smoother to the local characteristics of the data sequence at each time 1
point ti’ we examine the residuals in the vicinity to determine if there y:
{s some signal remaining in the residuals indicating that we have been

oversmoothing and should shorten the span or whether the residuals

exhibit a random behavior indicating that we could possibly lengthen the
smoothing span. We have used two different measures, the serial correlation,
and the Von Neumann ratio to examine the residuals for trends. In using

the serial correlation we have tried both the usual parametric definition

and also a nonparametric correlation coefficient which will serve to

preserve the robustness of the overall method.

di- . Bl

Let t be the current time at which a smoothed value is being computed
and let Pi-j° J=1, NMAX be the residuals from the smoothed values

Fi-3 = Xi-5 ~ Xi-3 (7)

Let ¥ = ave {ry_j) be the sample average of the residuals.
31N,

The usual definition of the serial correlation coefficient is given by
N, -1 -
i

2] (rf-j‘*]-;‘) (r‘ _J‘F)

j:

S x (8)

N1

-ya

(ri_j-r)‘

-
!
3=
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If 5 ¢S5, we conclude that there is no reason to believe that the

residuals are serially correlated. In this case we can increase the
smoothing interval, i.e., we set NS-«——NS+2, subject to NS<(2NMAX+1).
1f S<SL or S>Su, we conclude that the residuals are correlated and mey

contain a significant signal component because of over smoothing. In
this case we set NS«—NS-2 subject to NS>(2NMIN+1). The upper and
Jower limits for large Ni are

-1 + 1.645Jﬂi-? -] - 1.645Jﬁ1-2
S = and S, =

u Ni-l L Ni-l

For Ni<2° we use the tables
N S S

u L
5 .253 -.753
6 . 345 -.708
7 .370 -.674
8 37 ~-.625
9 .366 -.593
10 . 360 -.564
1" .353 -.539
12 . 348 -.516
13 .34 -.497
14 .335 -.479%
15 .328 ~.462
16 .322 -.446
17 .316 -.432
18 .310 -.420
19 .304 -.409
20 .299 ~.399

In order to preserve tho robustness of the median smoother, we should use

an adaptation test which is itself robust. This is easily achieved in the
serial correlation case by using a rank correlation coefficient in place ¢f
the ordinary serfal correlation coefficient given in (8). Let R(j)=rank(ri+j),

r1+j°(ri+k’k=]’Ni']) and let R](j)=rank(ri+j+]), ri+j+1°(ri+k+1’k=]'Ni']}‘
Then with dj=R](j)-R(j) we compute the Spearman rank correlation coefficient
as Ni']
67 d.2
3=
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If sugspzsL we conclude that there is no reason to believe that the

residuals are serially correlated. Thus, we increase the smcothing
interval by NSe——NS + 2, 17 either Sp<su or Sp<SL we decrease

the smoothing interval by NS-——NS - 2. For large values of
Ni the upper and lower limits are

’ il §
me
" L3322 ol

i R R

? _ 1645 _ =1.645
' WU MU A

i H""I'Wl'-mmwww it AR L
. P — T
1

For values N,<10 we use the following table

g i

; N Su S
1 5 1 A
] 6 .9 -.9
é 7 077] -‘77]
¢ 8 .679 -.679
B 9 .643 -.543
L ]0 -600 '0600
k Another useful method for adjusting the smoothing span is the
Von Neumann ratio which is the ratio of the mean square successive
] difference to the variance. Specifically,
1
i -
( N1 1 X
‘ L i i)
V= ‘N; (10)
i . « = r 2
;. JZ1(r"J R

Then {f V| <VeV we decide that there is insufficient evidence that the

residuals are correlated so that we then increase the smoothing interval
by NS «¢—— NS+2, If either V<VL or V>Vuthe residuals show evidence of

being correlated so that we decrease the smoothing interval by
NS «@—— NS-2. The upper and lower 1imits are sample size dependent and
are chosen by the following tabile.
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5 1.0255 3.9745
6 1.0682 3.7318
7 1.0919 3.5748
8 1.1228 3.4486
9 1.1524 - 3.3476
10 1.1803 3.2642
11 1.2062 3.1938
12 1.2301 3.1335
13 1.2521 3.08312
14 1.2725 3.0352
15 1.2914 2.9943
16 1.3090 2.9577
17 1.3253 2.9247
18 1.3405 2.8948
19 1.3547 2.8675
20 1.3680 2.8425

EXAMPLE-SMOOTHING RADAR ERROR SIGNALS. Figs 2-19 present the application
of adaptive median smoothing to smoothing of range, azimuth, and elevation
tracking error signals from a WSMR radar. The minimum smoothing interval
was 11 points while the maximum smoothing interval was 41 points. The method
used to adapt the smoothing interval to the data was Spearman rank correlation
coefficient.

Figs 2-3 present the raw range error signal. Figs 4-5 show the smoothed
range error signal and Figs 6-7 show the range residuals. The range tracking
error does not exhibit significant signal content so that the smoothing of
this signal is quite uninteresting. Note that the smoothed range in Figs 4-5
show bumps and dips having flat tops and bottoms. These flat peaks and valleys
are characteristic of median smoothing. Tukey suggests a method of removing
these peaks and valleys but we have not attempted to implement this in our
median smoothing routine. HNote also that the smoothed range exhibits a very
constant behavior. This constant, which is not zero, may be due to the
grarularity of range output readings.

Figs 8-9 are the azimuth tracking error signal. At the beginning the
radar is acquiring the target so that the error signal has a very strcng
signal content. After the target has been acquired the signal level decreases
drastically and as the target recedes from the radar the noisc content of the
tracking error increases until it is virtually one large band of noise.

Figs 10-11 are the smooth azimuth tracking error and Figs 12-13 exhibit the
azimuth tracking residuals.
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Figs 14-15 are the elevation tracking error. Again, this tracking

- error indicates a strong signal when the target is being acquired. Near

54 the end of the mission the noise amplitude becomes very large. Also, near
i the end of the track the elevation tracking error indicates again a strong

- signal content. Figs 16-17 present the smooth elevation tracking error

and Figs 18-19 are the elevation tracking residuals.

~ CONCLUSIONS. Adaptive median smoothing is a very simple method which
can be readily applied to smoothing almost any data sequence without
modeling either the signal or noise characteristics of the sequence. Adaptive
median smoothing is also robust with respect to outliers. When applied to
smoothing radar tracking errors as in the example given above, adaptive
median smoothing does remarlkably good in extracting the signal from the
noisy data sequence. Some additional features of Tukey's proposals for
median smoothing remain to be implemented and tested in our adaptive median
smoothing. We plan to test the use of repeated median smoothing and the
no technique of twicing, i.e., resmoothing the residuals in our adaptive median
b smoothing routine.
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FITTING AN ELLIPSE

Donald L. Buttz
US Army White Sands Missile Range
White Sands Missile Range, NM 88002

ABSTRACT

Three program procedures to fit on ellipse to i. y data constrained
by two criterias are described. The first procedure is an iterative

approach and the remaining two procedures are of a statistical nature,
using a line of regression.

1. Introduction

Ceginning with an impact pattern plot as points on an x, y graph, the
problem is to evaluate an ellipse of minimum area circumscribing 95% of
"activated” submunition impacts. The first nrocedure hereafter named PARAM
is an iterative procedure., The second procedure known as SELLIPSE is a
statistical procedure and the third procedure labeled ELLP3 is also
statistical in nature. However, ELLP3 is more a probability approach
to fit an ellipse of minimum area to a plotted impact pattern,

The problem of fitting an ellipse to impact pattern arose as a scoring
criteria, The two criterias for that scoring are that the area of the

ellipse must be the smallest while secondly containing exgctiy 952 of the
“"activated" submunition impacts.

The result of every procedure must provide the area of the ellipse,
the length of the major and minor axes and the angle of axes rotatjon.

This paper shall describe the program procedures PARAM, SELLIPSE and
ELLP3 in that order and then a summary of comparative results.

2. Program Procedure Called PARAM

The notation and relationships expressed below apply to the following
discussion:

////”‘—;T:::::::EB A {s the semimajor axes
(-c,9 B {c,9) B is the semi minor axes
C is the ellipse focal point

ELLIPSE CENTER AT ORIGIN
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2 2
Standard equation of an ellipse: i— + %3 = 1.

Arca of an ellipse Y AREA = TAB.

N

(o4
ELLIPSE WITH CENTER AT (h,k) AND NEW AXES %' AND v'

,2 )2
The equation of the curve relative to these axes is §K7 + xif = 1,
The equaticn relative to Ehe X andzy axes, by setting x' = x - h and
y' =y - k becomes, [(x-h)¢ + (y-k)® =1

A B

This is the standard equation of the ellipse with center at (h,k) and major
axis is parallel to the x-axis.

A,B, and C are related by the

(-0 equation A% = BZ + 2
.
. fe— A —o
N P(x,y) or P{x',y')
xl
R
a
8, M
AXIS ROTATION THROUGH ANGLE BJ
X pA
- = sin(a + O =
cos(a + ej) R ( J) R
xl L}
cos{(a) = e cos(a) = %—

lLet it be noted that {or purposes of this procedure an activated bomblet
will be defined to lie within the ellipse if and only if the sum of its
distance from (C,0) and (-C,0) after adjustment for axis rotation is less
than or equal to "2A", Secondly each fitted ellipse will be centered at
the mean ccnter of impact in the rotated coordinate system, (h,k).

el "v";-'“""'.lfmv-f"‘n.‘s’:w‘-e-‘
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PAKRLN PROGRANM F1OWCHART

PARAM 1S AN ITERATIVE PROCEDURE FOR FITTING AN ELLIPSE OF MINIMUM AREA T0
PLOTTED IMPACT PATTERN DATA

READ %,V
l--—— .
EX-V"‘:L:Y‘;‘- ‘Rc(/ (p3 (&) +03 (10 +1))/2
- . ed
YCEN = RCT=( D3 (gc. 1)+ D3 LTI+
e e L_. e e ——
'|
SN SRPS s e
- - "TEvaLUuATE Folt m.n.xw 7 RCL =P3(KR)
o \m(t) Vo - )2 +(Nan) - )z Rec < 4 T
‘ ! ~

e e =
‘- F
e A R .
ANG ARDD = ¢
DEL ANG = cos (D) X)) AREA =T RCc
p(1) _—
p2(I) = DELANG t ANGADD |

N

S T |
CALL ORDR | \WR( 7€ /&w&a\,
(D4, NR, D3)i o
sveRovTINE l -
"""" B
1TE N AMIN = RCO
we ) AR = AREA
o T
.- | SRS, ; N::,E. .
EVALUATE ! ENC =8¢
[ I.co~("/o)mz+d,5‘ A= RCO
{ 1cI=0.5 | B = RCO
4 ——

_ T
,)\ ' CALL FINDA! 3
te (GRS 1
Ico > WR-D—= PO

L
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PARAM FLOWCHART
BB 4+ FNC
A= A~-S
: ?
‘ e e o
N
F i
T FNC=FNC /2 i
‘B= AR/ A i
!

T LIPSE AREA |
AR=-TAG *@
]

CAR > AREAST

éﬁliféé AREA
AR=TAB

(A, 8 ,8R,
'ROTAT, CP)
SUBREVTINE

icAu.CHKEL
|

oL ae bl i

R T

BSAV=6 ‘

Rorsw:aarnirl

[cALL cHKEL |

—-FENC 7 (AS3NV, BSAV, ;
6=8-FN "<::> NR, RETSAY. P :
SUBROVTINE ] |

: :

I !

:

;

:
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PARAM FLOWCHART

'V-'“]"I[ i
-

L1 R T

A=A +S

e
SR

i S

1 WRITE A,

: A5AV, B, BSAY,
£ oAV, RE 15

:f ¥CTVAY T

: RCTAT+ T

] 16

Rrand i b B Rl Ll il AvB b

T A -

A —————— - T ~ R )
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After dterating untis) 8 .has been adjurted through 379 degrees

the e))ipse of minimum arca is determined. The cquation of the ellipse
of minimum arca which contains 95% of the activated submunition impacts is

(x'=h)2 « (y'-k)2 =1
AS BZ

where A and B were raved from the comparisons, and the rotation of the

courdinate axis syetem is specificd by Gj .
3. Tyopram Procedure Called SELLIPSE

SELLIPSE coumputes the sloupe B and the 3y intercept E from the normal

equations for linear regression.

Y
/777/\//"
YCEN p——-—y 1 % ¢/
]
X

—
I Y2 1Y )
The dashed figure indicates the possible ellipse to be determined.
lext, SELLIPSE 1ransform§ to center of x, y distributions. g z
Y v Xcen = 1714
NN
"
Ly
-~ - i=1”" 1
2 ycen 5
AL . X’
q'o '/
P
X x' = x - xcen; y' =y - ycen

SELLIPSE rotates coordinates through an angle @ to obtain the x" and y"

coordinates. Y X"

y'' = -x'gina + y'cosa
- = ~

N
/
~

”~
x'' = x'cosa + y'sina L
N\

\_‘[.—‘

X

SELLIPSE computes the standard deviations of elliptic distribution along
x'" and y".
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The standard deviation in terms of x and y respectively are

o, - -:3 Tzl (a2 - (102) + MZ(Niy? - (Iy2)?) + 2M(NIxy - IxIy))
- 1 1 2 2 - (cx)2) + (NIy2 - (Ly)?) - 2M(NIxy - IxIy)
o, N m‘f[ﬂ (NIx (tx)4) + (NZy (Iy)© (NIxy y))

The equation of the ellipse in terms of x'" and y" is

2 "2
X .+ S |
Al B?

where A is the semimajor axis and B is the semiminor axis.
The ratio A/o is k and the ratio of B/oy is k.
x

A = ko and B = ko
x y

where k is the percentile radius.
SELLIPSE does a computation to circular covordinates.
Let x''' = x"/oy and y'" = y“/cy-

. [ . xl

' ‘
. ." L/'
R R

The equation of a circle is

x' 0'2 + yl.lz = Rz

then R = x"'z + gy

where R is the radius,
SELLIPSE computes the mcan and standard deviation of the radius.
N
o _1hMy
mean N

- 2
. = //[t(g Rmean)
R N
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Percenlile Nadius 38 defined as foul)ows

R%X = RMEAN + KR%'OR

where Km‘for a normal distribution equals 1.645 for 95% ellipse.

In a normal probability distribution function, f(x) is the probability density
where £(x) = (1//Th)expl-(1/2)x?) .

For negative values of x, one uses the fact that f(-x) = f(x).
Also, let F(x) be the cumulative distrubtion function. Therefore:

x
F(x) = J —Lexp[-(I/Z):Z)dt
- Y2n
For F{x) % 95% x becomes 1.645 our K_,. Note that R%X = RMEAN « Kge. R

The semi major axis is A = R4 Oy
and the semi minor axis is B i R%Oy-
The rotlated angle is a = TAN ~(M).

The equation of the ellipse is then

ll2 |02 -
%2 + §2 =1
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SELLIPSE PROGRAM FLOWCIIART
/ST -

[&ew X, Y

EvALUATE 1
SKEWNESS AND !
KURTCSIS .

LPRINT M, B, oy, oy,
L ME AN, KRY:, o
Ars,

EVALUATE NORMAL BLRUATIUONSG
FOR L(INEAR REGRESzCN M, B

'SYEVALUATF: STAND ARD DE VIATIoNS

CCF EL " VIC DS YRIBU TION

- \THETA,X(EN,Y(EN,
'xn'u.z'r, YKURT,

A

—_— e ——d

XSKEwW, YSKEW

READ X, Y L/
END )

EVALUATE RAL.< AND S TAND ARD | !

PEVIATioN CF CIRCUWLAR
o1s TegUTION R,op

| o H
1 ;s ;
[EVALUATE RMEAN AND °/, TTIoE |
!RAUYU& ;
| i i
! A
1 4
i
t .
T TR 3
fVALOVATE A-AXIS, B-AxIw AND ‘I :
ANGLE ALPHA ' :
D ﬁ
t
3
1
¢
173 =
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4. Program Procedure Called ELLP3!

Assumptions and derivations will be discussed firse.

The data are presented as N orderad pairs (x,,y K ) representing locations
of submunition impacts in a north-south/eastiweit rectangular coordinate
system. x and y are assumed to be Jointly distributed, normal, random

variables with respective means M and M and non~zero variances astimated
by S and $2 , where x y g :
x y ‘
. N _
g2 . Uy ) _
j N-l » werej x.y.

There may exist between x and ¥y a non-zreo correlation whose coefficient,
R, 18 estimated by

N N N
. 181%4Yy ~ gLy%g (&, ¥V
N - 1SS .
X"y

The joint probability density function is approximately

. 1 "Q(xoy)
£ (x,y) = e
xy ' ZHsty /i - R2

where

1 X - M
2(1 - R2)'" s

I, <--3——y 02
) + :
X X Sy y

Q(x,y)

“Modern Probability and its Applications”, by Emanuel Parzen, (John Wiley
& Sons, New York).
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% - M x-M y-M y - M
5?2 - R gD + D)

- Ln(P[Z > 2)) = 20 i Rjjl( 3 ? S y
. ) x t 3 y

By translating axis so that the new origin is at the joint means (M v M)
and simplifying, the equation becomes: y

: b
ittt o S e S

- 2Q1 - R)in(P[2 > 2))8252 & $2x'2 - 2RS g x'y' + §2y'2
Xy Yy xRy X

By rotating thie axis 2bQut the new origin and simplifying, the equation
becones:

~ 2Q1 - RY)in(P[2 > z))s282 # x"2(52c052€— 2RS S_<inlcosék + S2sin?@) +
XYy Yy XY X

1 W (e2c4n2 2,.0c2
: y" (S<sin“B + 2RS S sinBcos® + S‘cos<d) +
y XYy x

+ x"y"(-25251inBcos® - 2PS_S cos?® +
y Xy

4+ 2RS S sin?e + 2525inbBcosH)
Xy x

setting the coefficient of x"y'" equal to zero yields the following
for 6:

R R R R I
!

y - 25 SR
g ¢ Stan [gy%§§~].
%

R T TR TR

Simplifying, to derive the equation of the ellipse

2
"
X — 4+

2(1 - R?)(~2n(P[Z > z]))Sﬁsé

Y3 Za - 2 iy
sy¢05 ) 2Rsxsysin9cose + stin [}

g} TP PRrTs
-
[ K}

yuz

2(1 - R2)(~en(P(Z > 2)))s2s2 ] 3
S<8in‘® + 2RS_S sindcosd + slcoéﬁﬂ
y xy x

\
3
_i A
ri
I
!
|
]
s |

175




VTR T oy

2 - %) (-tacplz > z1>>s;sg

where A = > v
SZcos?6 - 2RSS 61n8cosd + Sisin‘e

2(1 - R2)(-en(P[Z > z]))5§§§

B -
Zeind e lf
Sysin 8+ ZRSxSysinacosB + chos -]

The e¢llipse is plotted with center (M 'Mv) with semi major axis A,
with semi minor axis B, and with rotaliun ¢ relative to the usual
north-soutlhi/east-west coordinate axis system. The constants R,S_,
Sy. Sx<, and Syz are 211 conputed from the coordinates before ro¥ation.

The following discussion applies to deriving of PPOGRAM ELLP3 Zermon-
strating the iniermediate steps.

Recall that we translated the old axis to the new origin (Mx'My)'

(x,y) x = x'+M x',y")
OLD y = y'+ My NEW

then in the new axis our origin is (0,0)°'.

As a result of translating we get:
-2¢1 - R)an(P(2Z > 2])s2s2 & s2¢'? - 1ot 4+ §2u12
s v y 2RSxSyx y' + 8ky
setting the left hand side of the equation to K, 2 ~onstant, we get:
. 2 2
K.sZX'“ et 24,0
y ZRSxSyx y' + Sxy .
We do a rotation of axes thru ® with recpsct to the old axes about
(Mx,My) which is now (0,0)'

(X'.Y') x' -

] x"cos8 - y'sin® (x",y"
TRANSLATED y' = x"sin® + y'cosé ROTATED
K = s;(x"cose - y"ging)? ~ 2RSxSy(x"cose ~ y'8in8) (x"sind + y'2us6) +
+ Si(x"sine + y"cog8)?2
K =

2 ~
x" (5%c08%8 - 2RS S gindcoss + $28in28) + x"y'(-252sinbcosd -
y Xy x y
- 2 2 2
2RSxSycos 8 + ZRSxSysin 6 + 2RstinBcose) +
+y112(S;51‘n29 + ZRSXS

sinfcosd + S°cos?e) .
y X

Take the x"y'" coefficient and set it equal to zero

-252ginBcosd - 2RS S cos?d + 29 4+ 252 -
y x yc ZRSxSysin ] Zstinecose 0.
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Using the identities sin26 = 25inBcosd® and cos2d = cos?8 - sin?6 one obtaine
2 . g2 8 - - .
(Sx y)sin2 ZRSxSchSZG 0
Making use of the identity sin26 = tan26cos26 this becomes

2 - g2y _ - 0.
cos26 [tan26 (s2 s2) zasxsy] 0
If the product of two numbers is zero, one or the other,or both are zero.
In case :
tan26 = 2RS S §2 - 82
n N y/( 2 2
then

- 1 -1 2 - g2
8 2 tan [ZRsxSy/<sx Sy)].

We uge this value for,8 and eliminate the x'"y" term. Thus leaving terms
containing x"2 and y"  with coeficients we indicate by € m and e where

¢ = S2co0s8%8 - 2RS S sinbcosd + S2sin?s
x y x y x

¢, = S2sin?e + 2RS_S_sinbcos8 + $2cos?e
y y Xy X

and

K = =2(1 - R2)en(P[Z > z])s§s§ .

With the elimination of the x" y" term we get the equation of the ellipse
in the translated rotated axes:

|02 "2
K = X Cxu +y cyn

or
2 2
1 1"
1 - X4 X
K/an K/Cyn

Ve see from this that the semimajor axis A and the semiminor B have the values

A = /K/cx" , B = / K/cy"

when the rotated angle 8 is

= 1 -1 2 _ Q2
9 5 tan [2sxsyR/(sx sy)]
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ELLP3 PROGRAM FLOWCHART

ELLP3 IS A PROBABILITY APPROACH TO FIT AN ELLIPSE OF MINIMUM AREA TO
PLOTTED IMPACT PATTERN

READ X, Y

'

xXSuMm =0
YSum = 0
XSASUM= 0
Y5Q5UM= O

PROSYM3I O

1

EVALUATE
XsuMm
YSuUum
X908 5IM
YSUSvMm
PROSYM
XCEN
YCEN

B!

eVvALUVATE
DEVIATIONS
sy
Y

T

EVALUVATE
CCRRELATION
COEFFICIBENT

R

L

CVALUATE
RO YATION
ANGLE

6
¢

EVALUATE
V= ”0'1§%

P2 =ALOG(V)

4

EVALUATE

K
TRNZ
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METHODS FOR APPROXIMM (NG MATHEMATICAL FUNCTIONS !

Donald W. Rankin
Army Materiel Test snd Evaluation Directorate
US Army White Sands Missile Range
White Sands Missile Range, NM 88002

ABSTRACT. The increasing use of small computers to control complex
systems and equipment often gives rise to the need for spproximating mathe-
matical functions under restrictive conditions. These conditions may be so
varied that no single solution can be called optimum.

Several methods are discussed in some detail, with a view toward simpli-

fication. In fact, some of the procedures easily can be committed to memory.
An unexpected dividend allows the analyst to employ the powerful features of
some programming lanquage even though it may lack a needed mathematical
function,

A partisl list of subjects addressed includes:

(1) Power series. A method for developing another power setries which
converges more rapidly.

(2) Padé approximations (rational functions). Developing a Padé expres-
sion from & truncated power series. Reducing the Padé coefficients to
integers (although the function is unique, its coefficients are not --- a
powerful advantage).

(3) Operations which increase accuracy.

(a). A linear combination of two approximetions can be much more
accurate than either alone.

(b) Properly restricting the variable range can markedly improve
the rate of convergence.

(c) A Padé expression can be "optimized" for a stated variable
range, in effect embracing both of the above advantages in a single
expression.

(4) Tschebychev polynomials. Techebychev series. The necessity of
employing a transformation of variables. Choosing & transformation which
simplifies the Tacihebychev expression end reduces the lsbor of computing the
coefficients.

-

(5) Maehly's nethod of developing a rational function from a Tschebychev
series.

(5) An efticient sguare root algorithm which does not require access to
assembly larguage. Extension to higher roots.
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I. INTRODUCTION. There is increasingly widespread use of embedded small
computers to perform monitor and control functions in all manner of complex
systems. The mushrooming demand has triggered a virtual explosion in the
computer industry. But equipments are 8o different, and conditions can be so

varied that no library of software routines can hope to avoid either paucity
or obsolescence. -

This paper, then, is not a catalogue of mathematical approximations.
Rather, it is a discussion of several methods which can be used to produce
required approximat;ons.

The methods can be applied to any mathematical function which can be
developed in a power series. Analogously, a digitel filter can be gynthe-

sized to spproximate any physical process capable of being expressed as @
linear difference equation of any order.

An unexpected dividend accrued recently. An analysis program was written
in COBOL to take advantage of the powerful "bookkeeping" features of that
language, even though it contains no subroutine for computing required

logarithms. Employing the methods herein, a suitable subroutine was easily
devised.

II. RATIONAL APPROXIMATIONS TO CERTAIN MATHEMATICAL CONSTANTS, Sometimes
it is useful to be able to express s mathematical constant as a ratio. This
is particulerly the case when a computer (or calculator) will compute with :
greater precision than it will store or accept inputs. The author owns a :

calculator which computes to eleven digits but accepts, at most, eight-digit
entries.

A carefully chosen ratio will deliver as many significant digits as there
are total digits in the fraction (reduced, of course, to lowest terms).

There are several methods for searching for these approximations. We
jillustrate a method of continued fractions.

Suppose we need an spproximation for = = 3.141592 653589 793238 46 - --
Taking the reciprocal of the fractional part, we express it as

1
"= 3+ TTE7513 305931 045769 6

Repeating the procedure,

l .hll
n=3+

1
7 + 15.996594 406685 7199

It is obvious that
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: will be an excellent approximation. Unscrambling the continued fraction
; yields

g ; ne 3 T%% = %%% , in error by only 2.67 x 10-7,

If every numerator is unity and every convergent begins with an integer,
convergence is assured, but may be slow (e.g., 1ln,10). A convenient way te
hasten the process is to begin with almoat any recognizsble approximation,
then apply the continued fraction technique to the residusl. Thus

1n,10

i
PR

A
t

2.302585 092994 045684 018 «--

23 1
10 * 386.833279 229539 353860 +-°

It is immediately apparent that

2301
In 10~ 35+ Tag =3
[

will be an excellent sapproximation. In vulgar fraction form

53443

I 10 = 25210

which errs by 3.6 x 10719,

Similarly, e = 2.718281 B28459 045235 36 +++ can be expressed as

i% + 0.003996 114173 330949 646 «°°
whence
-2, 1
-7 250,243100 328250 339641 -
from which

19 4 2721 - _7
5 1001 (error » 1,1 x 10°7).

—

One more step will produce

19 1
= == +

e
7 3
250 + 37773537 970929 849535 ...

+

which leads to

19 1
e~ =5+
250 «+

44%
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Unscrambling,

. 176180

wITH (error ~ 2.3 x 10-7).

It should be apparent that any mathematical constant can be approximated with
arbitrary sccuracy by an easily-~found rational fraction.

Some of the common ones are listed:

T = 3.141592 653589 793238 46 <+ e = 2.718281 828459 045235 36+-+-
333 -7 . 193 -5
LI sy S 2.67 x 10 e = 55y - 2.80 x 10
_ 312689 1 _ 49171 -10
" = Z55e3y - 2.90 x 10 e = Y5055 - 2+77 % 10
72 = 9.869604 401089 358618 B3 +--- Voo = 1.648721 270700 128146 85----
= 3%% +3.92 x 10°% Jo = %% + 7.26 x 10°°
2 _ 98548 _ -9 — _ 34361 -10
n? 2 Sgzee - 5.52 % 10 Yo = oy + 1428 x 10
7/180 = 0.017453 292519 943295 77 «+«- e = 7.389056 098930 650227 23++--
180/n = 57.295779 513082 320876 80 - - -+ 2 _ 23;; - 1.65 x 10-6
- 4068 -6
180/ = Sz5= + 4.87 x 10 ) 176761 (o0 1o
= 7723922 .
_ 829471 10
180/n = =To755 + 7.52 x 10
1n 10 = 2.302585 092994 045684 018+ -«
/¥ = 1.772453 850905 516027 30 +««- In, 10 = ;1% 465 x 10-
296 2
oz 522 - 1.24 x 10-6 ;
167 53443 10 9
Ine10 = 35535 + 3.62 x 10 >
_ 8545 5 '
/T = 73y + 3416 x 10
Culer's constant
YTT = 2.506628 274631 000502 42 +--- Y = 0,577215 664901 532860 6065 ...
2 245 -6 228 -1
/T = 535 - 3.025 x 10 Y = 35 + 4.75 x 10
221987 T _ 33841 11 ]
YIT “885¢0 + 1,492 x 10 Y = $8e28 * 3.15 x 10 4
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1.098612 288668 109691 395+«

In,2 = 0.693147 180559 945309 4172++++  In,3 =
1n,2 = £3 - 3.46 x 10 1ng3 = 22 4 2,07 x 10-
In, = 2222 4 679 « 10-1" In,3 = S84 5,98 « 10-1

II1I. POWER SERIES. Power series are and will remain most useful tools.
Whenever great accuracy is required, s properly chosen power series will deliver
all the precision of which the computer is capable. Let us look at a famillar

Maclaurin expansion:#

sin 2 [3 6 8
Er R e el i IR (W

This series converges quite rapidly, providing the value of g 18 not too
large. But we note that if ¢ exceeds %, we need merely compute cos (% -8).

Hence % will be the largest value of the argument employed. The general term

can be written

2n

_ (0
Voo ° (‘l)n —“_M (2)

Any term can be computed from its predecessor by means of a term-to-term
recurrence ratio. Thus

-q2
“’Zn = mﬁ-—m ‘J’Zn-z (}) ! Lo

There remains only to compare the size of the latest computed term with some
pre-established criterion. If the term is small enough, the computation is
finished. Since it is not known in advance how many terms will be recuired,
running time is unpredictable, making the method unsuitsble for real-time

situations.
Another method employs the "nested" polynomial techgique. The series is
truncated at an arbitrary point (e.q., after the term %;) and the arithmetic

begun at the other end. We can write

dyez o dyez o dyg2 L2 8in g
(.. |2)e .l)e + 12)9 |l)ei’ +1 = .

*for the sake of uniformity, throughout this paper we shall employ series
wherever possible whose leading term is unity. The advantage when employing a

recurrence ratio is obvious.
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Since most computers multiply faster than they divide, it may be more efficiént
to multiply both sides by |9 = 362880, yielding

(((82 - 72)82 + 3024)82 - 60480)62 + 362880

~ 362880 Qif}li (a)

In this form, the algorithm will heve a fixed running time (which is very
faat), but the error will be a function of the arqument. The maximum error,
however, can be closely estimated. In this case (for sin 8) it is given by

. LA R -9
el < 1 (a) = 1.757 = 10

1v. RESTRICTING THE RANGE OF THE ARGUMENT. Supposing that, in the pre-
vious example, we had computed sin'% » then recovered the wanted value by means
of the identity sin 3 ¢ = 3 sin ¢ - 4 sin3 ¢ , or, in handier form:

sin 3 ¢ _ 2
sin ¢ ° 3 - 4 sin? ¢ (5)

The errors will be as =-9:1, hence (for sin 3 ¢)

2 (30 -13
el < Y (12) = 0.89 x 10

This is a dramatic reduction in the maximum error. If preferred, the series
can be truncated one more term, simplifying the nested polynomial to

2

((a2 - 6%)6% - 840)6% + 5040 ~ Snap 2108 .

)

Maximum ercor is now |e]| ¢ 2 (T'z")9 = 1.433 «x 10_10

12

We can carry the process another step, using the identity
8in 5 ¢ = 5 s8in ¢ - 20 8ind ¢ + 16 sin® ¢ or

sin 5 ¢

yraral I ain’ ¢ (5 < 4 sin® ¢) (7)

The errors will be as 25:1, hence

25 w7 _ -8
ley < 7 (20) = 1.17 x 10
for the extremely simple expression
(6% - 20)0% 4 120 ~ 120 8108 (8)

]
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wWhen faced with a very"slowly éonverging aeriés, some such technique is
virtually mandatory. The series for logarithms and for the inverse trigono-
metric functions offer typical examples. Let us look at
arctan z _ 22 22 28 2
z Sl it oy (9)

for values of 2 > 1, we employ the identity

arctan z = %»- arctan 1
b4

but this alone is insufficient. Clearly, if we summed a billion terms, the
maximum error would still be

1el < (2,000,000,001)°' = 5 x 10-10
An additional step is required. We offer two choices.

The first method does not involve square roots. (Some computers perform
square root awkwardly or slowly.) The identity

1. 1 1
arctan o = arctan T — + arcten T o7 (10)

is employed. This requires summing two series, but the worst-case argument

]
cannot exceedly. For arctan z

L (lyz9 _ -10
ley < 29 (2) = 0.66 x 10

after only fourteen terma. If desired, the identity can be employed a second
time, resulting in

1l _ } 1 . 1
arctan . = arctan 7+ 3" arctan T a2 ar~tan I T30+ a? Q)

Three series must now be summed, but after only nine terms each, the maximum
error is given by

2lyvi9 _ -10
el < 19 3) = 0.9 x 10

In the second method, the identity

arctan x = 2 arctan ———>%—— (12)

1 + /1 + x2
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is employed. The argument does not now exceed = 0.4142..., and

1 + 72

after 11 terms, maximum error is Jej < 1.36 x 10-1'0, Obviously, the iden-
tity can be applied a second time, yielding

arctan x = 4 arctan — X (13
1 +us+ v2(u? + Uy

where u? = 1 + x2. The argument now is no greater than 0.1989..., and after
only six terms, |ei < 2.35 x 10-1'0,

The identity can be applied, of course, as many times as desired. One more
application yields, after only four terms,

jel ¢ 7.75 x 10-10

Of al) the tocls that can be used to increase the accuracy of an approxi-
mation, restricting the argument rarge is perhaps the most important, and
gshouyld be given the highest priority.

LE A0 2Y, ke g e R o

Lot e

V. PADE APPROXIMATIONS. Just as the ratio of two integers can be used to
approximate an irrational number, so can the ratio of two polynomials be used
to approximate a tranacendental function. If the function can be expanded in
a power series, there is available a particularly easy method (called a Padé
approximation) for obtaining auch an approximation. The expression will look
like

e

et

1+8x+ax?+ax’
1L 2

1 - - 2 40 x3 PR
l"b]"*bzxz‘Pb’x’”l +c1x+c2x +;,5x +Cax + (18)

It is easy to see that we can multiply the coefficients of the rational func-
tion by any arbitrary constant without changing its value. Thus although the
function may be unique, its coefficients never are. Herein lies a gecond
advantage of the Padé. 1In many cases the coefficients can be reduced to smsll
integers. In this form, the Padé is very economical of both running time and
storage space, qualities which cannot lightly be ignored.

TRCMIEW

There is no restriction on the degree of polynomial used in either numera-
tor or denominator. However, the better approximations occur when the degrees
of numerator and denominator do not greatly differ, and are significently more
accurate than the truncasted power series from which they have been derived.
The Padé is much better behaved in the reqgion of maximum error (the slope of
the Padé cerror curve is less steep).

[P LY

A word of caution is necessary. All polynomials have zeroes. All poly- ;
nomials of odd deqree have at 1eeant one real zero. Zeroes in the denominator '
usually produce poles in the rational function. If such a pole is Fictitious
(i.e., there is no corresponding pole in the function being approximated), the
approximation will "blow up" as the argument approaches the pole. Ffor real
velues of the argument, complex poles usually cause no difficulty, nor do reasl é
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poles which lie well outside the argument range bheing used. (We have found an
additional reason for restricting the argument range.)

It will be found that if a power series is truncated after that term whose
exponent is equal to the sum of the degrees of the corresponding Padé4 numere-
tor and denominator, it provides just enough known coefficients to enable us
to compute the unknown ones (in the Padé expression).

The basic form for computation is written

leax+ *** +ax"
! D L lac x4+ Cxt 4 e c x" (15)
1 bix + °* &b~ 1 2 * Chen

in which the c¢ 's are known, the a"s and bl's unknown. Both sides are
multiplied by the Padé denominator, yielding

1l + atx + *** 4+ 8B X =

(1 4bx+ oo +b X" e x+c x>+ ac_ ™M (16)
1 m 1 2 n+m
The indicated multiplicetion is performed on the right. Like terms are col-
lected, dropping all terms of degree greater than m + n. These terms will be
amall, but dropping them explains why the Padé and power series epproximations
yield different results.

The coefficients of terms of like degree are now equated (after supplying
the left side with m terms equal to zero). This gives rise to a system of
m + n simultaneous linesr equations in m + n unknowns. Now it is seen why
the higher degree terms are dropped. Retaining them would lead to additional
equations which might be (indeed usually are) inconsistent.

The required set of simultaneous linear equations can be written directly
by means of the following algorithm:

Step 1. [Imagining a checkerboard enter the known coefficients --- the
coefficients of the given power series --~ along the principal diagonal.
cg = 1 1is a known coefficient.

Step 2. Below c,,, draw a horizontal line. No terms will be entered
below this line.
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Step 3. Enter the first unknown coefficient (b,) everywhere along the
next diagonal.

Step 4. Repeat step 3 for each successive coefficient of the Padé
denominator.

Step 5. When all the b,'s have been entered, there will remain at the
lower left corner an empty n x n trisnguler pattern. Fill it up with
zeroes.

Step 6. Multiply each b, by the known coefficlent at the head of the
column.
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Step 7. €Each horizontal row represents the right side of one of the
required equations. Add <+ signs between appropriate terms. Place an =
sign to the left of each expression.

Step 8. Arrange the coaefficients of the Padé numerator (the a 's) in a
vertical column, supplying m zeroes at the bottom. Each element becomes the

left side of the appropriate equation. The complete set of equations can now be
written.

1 =1

bl + C' i

[
~
1]

b2 + c‘b1 +c,

[+
(W
[}

= b, + c,b2 + czb, +Cy
020+ == +c by # ~occeeen + Cpyn Qa7”n
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Step 9. Those equationa hoso left member ia zero form-a-éet'of m edua-
tions in m unknowns, and can be volved for the b, 's.

Step 10. The a,'s are found by direct substitution.

Step 11. Multiplying all the Padé coefficients by their L.C.D. converts
them to integers.

Let us illustrate »y example. Suppose it is requlred'to write a routine
for sercten z. Let us arbitrarily decide to write a Padé of the form

. 2 '
o _kx (1 + ax )
arctan z = 1 +b, * Dyx

Z

1«71 ¢+ 22

using the transformation x = to restrict the range of the arqu-

ment.
Under this trensformetion
arctan z = 2 arctan x
so we already know that k = 2.

Note that for an even function, we can mentally make the substitution w =
x? and derive the Padé expression as though it were a function of w.

The appropriate power series ia

arcten x _ 1 -

x- L X _x e
X - 3 *5s + (9)

We require a rational function such that

1+ ex2 . o Arcten x
1+ bzxﬂ + b, X

Immediately we write the known coefficients es a diagonal, then add the
b's.,

1
1
b, -3
1
b, b, 1
1
0 b, b, -1
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Next we multiply by the known coefficient at the head of sach column:

1

b, -3

b, - % b, % )
0 ";-bn %bz '%

After adding the column of a's (and zeroes) to the left end supplying
the needed = and + signs, we have the required set of equetions:

1 =1
1
82=b2-’
1 1
0 = b4 -3 b2 +3

Those equations whose left member is zero form a set which can be solved

for the b's. Thus, after multiplying the last equation by 3, we

- 1 )
O-ba-jbz-o-;

4 2
Adding,
- 4 _8
0= 75 bz 35
from which
B 156
bz'}s 4 - 7
= -2 4.1 = 3
0= ba : 43 or ba = 35
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and

bx2 4 -2xb
1l + axZ + =X

! Multiplying numerator and denominator by 105 (the L.C.D.) converts all the
coefficients to integers:

105 + 55x2
105 + 90x? + 9Ix4

The con-.iete approximation is

3 _ x. (210 + 110x2)
\‘ | arctan z = 195 + 90x2 + 9xa

where x is given by

—_
1 +71 422 .

ek

Y2 -1 where, of course z = 1 and

The maximum error occurs when x

P

arctan z =

0.78539 81634)

1]

G
The Padé approximation yields (at z = 1)
arctan z = 0,.78539 52528 427

CETRT S W

in error by - 2.91 x 10-6

RS

The truncated power series from which the Padé was derived yields é
arctan z ~ 0,78532 81810 156 %

in error by - 7.00 x 10°% é
The Padé is noticeably better, as it often is when the power series é

converges slowly --- another plus for the Padé. It works best when needed
most.
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The algorithm for computing Padé coefficients also can be used to develop
a reciprocal power series whenever one is required. Since all the a;'s are
zero (except a, = 1, of course), the left sides of all pertinent equations
become zero, el?minating the need for a simultaneous set. The b;'s can be
determined in order, for any arbitrarily large number of them.

After truncation, both the original power series and the reciprocal series
can be thought of as limiting-cese Padé approximations.

Suppose that a function ia expressible in power series form and that the
Padé elgorithm has been used to develop the reciprocal seriea. We can write

1
T1l4ehx+ h2i7'+ tee

f(x) =1+g,x+ gzxz PRy

The latter can be written

1
fx) = 1+ hyx(l «kx+ k2x7+ see)
and the process repeated upon the interior series, yielding

1
h,x

f(x) =

1+ 1+ Lyx+ Lpx2 & co0

Continuing in this manner develops the function in continued fraction form,
and emphasizes the close relationship between Padé approximations and
continued fractions.

If a continued fraction is terminated at some nth convergent, {t becomes
an approximation to the function. 1t is easy to evaluate by a process of
"nested division" not unlike the evaluation of polynomials by "nested
multiplication."

Use of the continued frection technique often resulte in a program of sig-
nificantly fewer instructions. However, so many divisions must be performed
that running time may be quite slow. There are some models of computers which
divide quite rapidly (usually in single precision only). For them, the use of
continued fraction epproximetions seems attractive.

If a terminated continued fraction is "unscrambled,"” it will be found that
the resulting rational function is a member of the set of Padé approximations.

VI. DEVELOPING A POWER SERIES WHICH CONVERGES MORE RAPIDLY. Let us con-
tinue to use as an example the series for arctan x. Repeating for convenience

1
grct:n X .- %‘z . %x“ - %x‘ P LAY (9)
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a saries which converges very alowly. Since this series (s the right aide is
stated) is an even function of x, we mentally meke the substitution w = x?

and treat it as an expanuion in w.

Now if the ratio of two successive coefficienta approaches some definite
limit L (* Q) as the exponent of w increases without bound, multiplying by
(1 - w/1)® will produce a new sesries which converges more rapidly (n is a
positive integer). It will be necessary to include enough terms to accommo-
date the multiplier. Thus, since in the present cease 1 = -1,

2__ 6 2 _ 8

2 2
1—5—5— arctan x = 1 + %xz -3 4 . T3 - FIeX o+ oo (18)

and

(1 + x2)2 - s.2 ., _8xA 8x6 8x8 ..
~ arctan x = 1 + $x° + 1,375 = 3.5.7 * 5e779 - (19)

1+ x2
x, let us develop a Padé expression

The

Using the series for arctan
which has one less term in the denominstor then did our previous effort.
work layout is so simple, we could almost do it in the head.

1 =1

1

from which b= 35 end a = %%. The required expression is

(1 + x2) arctan x -
X

Dividing both sides by 1 + x2,

1.2
1+ 5%

arctan x _
X 1+ %xz + %x‘
for purposes of comparison, let us multiply by the same integer as before.
Thus

arctan x _ 105 + 91x?
x T 105 + 126x4 + 21x4
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Since Qe used fewer terms of the power series t6 déveiob this expression, we
expect leas accuracy, and indeed at z = 1,

arcten z = 0.78530 37156 499
in error by -9.445 x 10-5

VII. OPT NG A PADt APPROXIMATION FOR A STATED VA RANGE. Once
the decision has been made which sets the range over which the argument will
be allowed to vary, the Padé approximation can be "optimized” For that
specific range. If the range reatrictions change, so must the optimizing

-coafficients.

Let us continue with the example, arctan z.

Arranging the Padé coefficients in matrix form, and labeling them primary
and secondary according to the order in which they were developed, we find

p 105 55 0
105 90 9
and
S 105 91 0
105 126 21
Let us produce what we shall call the "delta matrix" by performing the

subtraction
S~-P=2a
. (o 36 u)
0 36 12
If the work has been performed correctly, the first column will be zeroes and

the second constant. If desired, the delta matrix can be reduced to lowest
terms.

It turns out that eny multiple of A, when added to P, produces a linear
combination of P and S, which will define another Padé-like approximation.
Its error curve will be a linear combination of two monotonic error curves
which are not congruent, and hence the combination error curve will not be
monotonic, but will have two zeroces. One will be at the origin. The other
can be positioned arbitrarily. By choosing that point near the maximum
allowable value of the argument, the approximation can be markedly improved.

To return to the example, the maximum errors of P and S suggest the

form
,f105  sa o
P (105 89 aé)

p! 315 162 0
315 267 26

_ A
P -3
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The full axpression is

x(630 + 324x2)
315 + 267x% + 26x4

arctan 2

where

X g8 ——f
1 +¢1 + 22

arbi e e

When z=1, x=v2 -1, arctan z = n/4. The approximation yields 0.78539
79371 287, in error by =2.2627 x 10-7. This is an order of magnitude
improvement.

Let us define relative error as follows:

. _ approximation _
relative error = SEEE= e 1 (20)

Graphing the relative error of the approximation P', we see that it
varies from +2.814 x 10-7 at z s 0.77 to -2.881 x 10-7 at 2z = 1.00,
leaving virtually no room for improvement. For all practical purposes, then,
P' optimizes P. (See Fig. 1)

Supposing that we apply the transformation a second time, add a term to
the numerator, and optimize. How much accuracy would be gained?

2
1 + azj, + aix*)

arctan z ~» 4x (1 " b2§7 - bax“

4

1 +v+ 2V ¥ V)

where v2 = 1 ¢+ 22 and x =

1 =1

8, =% B % g
8, = b, - % b, + % ;
0=0 .30 ¢%b2 -3

0=0 +0 +3b, -3 .3

The basic approximation then computes to be

945 + 735x2 + 64x4
945 + 1050x2 + 225x¢

)

arctan 2z » 4x (
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When 2z =1, x = 0,1989 **+ _ r.e. = 1.3 x 10-10

The gecond form is derived from

l =1

a, =b . %

a, =0 ' +3b -1

0=6 + 0 3L ey

from which

b= % a, = %% 8, = T%%
o Tl T duces t ten 2 = 4 (945 + 1035x% 4 1a4x‘>
14182 4 38 reduces o arcten z = Ax\gas + 1350xZ + 405x7

yielding
A 0 300 80
0 300 180

P - 0.0073754 is virtually optimum, giving

tan 7 = 395 % 732.7875x2 + 63.41x4
arctan z X\945 + 1047.7875x? + 223.6725x%

r.e. is within + 8,1 x 10-12
Multiplying through by 400 obviously recovers integer coefficients.

The reletive error curvea for these two "optimized" epproximations are
plotted in Figure 1. The form of the error curve near the maximum arqgument is

typical.

The approximation P -~ 0.00744 is close to optimum and yields smaller
coefficients, viz.,

1575 + 1221.3x2 + 105.68x
arcten z = “‘(1575 + 1786.3x7 « 372.7ax6)

Multiplying by 50 recovers integers.

Additional Padé approximations sre given in the appendices.
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VIII, THE USE OF TSCHEBYCHEV POLYNOMIALS. Let us introduce the following

shorthand notation:

To = cos (0) = 1
Ty = cos ©

cos 26 = 2 cos? ® - 1

-
~
(1)

cos 30 = 84 cos? & - 3 cos B

[y
L]
"

cos nd (21)

n

Recalling that

and

cos (N6 + 68) = cos & cos nB - sin 6 sin nd

"
]

cos (n® - 6) = cog B cos nB + sin 0 sin nd

we obtain by simple addition

cos (n6 - 68) + cos (N8 + 8) = 2 coas & cos nb (22)

which, stated in the shorthand, becomea

Thet + Thet = 2T4T4 (23)

This trigonometric identity --- sometimes called a three-term recurrence
relation --~ enables us to compute any T,,.i from the previous two. The
result will be an expression in the various powers of cos 6.

Further to simplify,'let us meke the parametric substitution x = cos 6.

This results in

To =1
Ty = x
T2 = 2x2 -1
T3 = 4x 3 - 3x

Ty = Bx% - 8x2 4 1 (24)

etc.
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We have just generated the set of Techebychev'polynomials{

Since any T, can be axpressed as the cosine of some angle, it can assume
only values between the limits <1 and 1. Thus each T, can ba said to be
an equal ripple function, with known extrema.

[t should be apparent that any analytic function can be expreased as a
series in the T,'s, this being merely a special case of e Fourier serjes.

Turning our attention to the parameter x = cos 8, it is seen that it,
too, is subject to the constraint = 1 < x € 1. For velues of the argument
outside these limits a Tschebychev series will not converge. Sometimes this
difficulty can be overcome by a suitable transformation of variables. For
example, suppose it is desired to expend 1ln,2z in a Tschebychev seriea. The
argument is very badly behaved (0 < z < =), but the transformation

suggests itself. Solving for 2z,

ln (1 + X

Hence ) can be expanded in s Tschebychev ser.es in the variable x.

Theoretically, the number of these transformations is endless, hence there
is no unique Tsachebychev series for any mathematical function. Thus when
stating a Tschebychev expansion, it is necessary to state also the transfor-
mation used.

It is useful to be able to express the various powers of x in terms of
the Tschebychev polynomials. This is easily done by what I call "half" a
binomial expansion. When there is an even number of terms in the quasi-
binomial expansion, no manipulation is necessary. But when there is an odd
number, the middle term muat be halved. This always happens to the term
involving T4, so that it is convenient to use T,/2 and then employ the
binomial coefficients. To illustrate:

1 :TO

X = T1

X2 = (Tz + 2 ) = (Tz + TD)
x> = 2Ty + 31))

¥
x4 = 5T, + 4T, + 69) = J(T, + 4T, 4 37))
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n 1 e ;
2n-l n-4 + ) (25)
As a check, the sum of the interior coefficients must equal the exterior
denominator.

»
(1]

(Tn + nTn_

2 * . ;-1) T

If a given function can be expressed as a power series, and if the
argument behaves properly (i.e., its absolute value does not excead unity),
direct substitution of the various expressions for xn, followed by a
collection of terms, results in a Tschebychev series, in which the function is

expanded in terms of the successive Tschebychev polynomials, rather than in
ascending powers of the argument.

Tschebychev series have two extremely useful properties, which doubtless
are responsible for the considerable popularity of the method. They are:

1. A Tschebychev series will converge more rapidly than any other series

(given the same function and argument). Thus, the desired accuracy often can
be attained with fewer terms.

2. Each Tschebychev polynomial is an equal ripple function (between the
argument limits -1 and +l1). There will be n + 1 of these extrema,
interlaced by n zeroes. The value of these extrema, of course, is + ],
since T,(x) = cos nx. It has been proven that, of all polynomials of like
degree whose highest-degree terms have the same coefficient, the Tschebychev
polynomial has the smallest extrema. In other words the maximum (extremum) is
minimized. Hence the term "minimax." Thus, when an approximation is computed
from a truncated Tschebychev series, the error is closely given by the
coefficient of the first neglected Tschebychev term (see Fig. 2).

A Tschebychev series is essentially a Fourier cosine series, and the
coefficients of course can be computed by evaluating the pertinent definite
inteqrals. This can be laborious. Since usually we will be dealing with
well-behaved analytic functions, it normally will be better to expand the
function in a power series and then develop the Tachebychev series by direct
substitution and collection of terms, in the manner already seen. It will be
observed that each Tschebychev coefficient is itself the cum of an infinite
series. These latter series are easily summed by a programmable calculator,

since they involve nothing more complicated than powers of s constant, facto-
rials, and binomial coefficients.

When the function being approximated has a zero in the range (-1, 1), a
Tachebychev approximation may benave very badly near this zero, Simply
stated, the error in the approximation may exceed the value of the function.
Often, this is less a fault than a result of clumsy handling. In most cases,

the zero can be removed by altering the function slightly. We shall
illustrate by example.
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We wish to develop a Tschebychev series for sin ©. Now

g3 > ¢/

Py VLTS 1 T -ve gt

;g ain3=9-l—)—+lz-'l+'
- Letting the argument vary from - % to %, we see that the proper transformas- E
éj ; tion is 8 = %x. Direct substitution yields a series in those Tschebychev g
v % polynomials of odd subscript. Truncation; however, produces an approximation
e which is of little use when s8in @ is very small. The problem is very easily ; <48
: corrected. Noticing thet © factors the right side, x g
i .
i gin o _ 8¢ o4 gb ]
ig ] -1-|_3_+'2-L7_+ (1) ;
i, The function 312  contains no zero within the chosen argument range. In ‘
[ fact, 208, g
t 6
i sine nm ., 82 &b e |
¢ x ca -
E does virtually as well and leads to some simplification. It §s obvious that,
in the last two cases, the two Tschebychev series will involve only those
polynomials of even subscript. -
i It is instructive to show the complete derivation of a Tschebychev series
for s8in @, Ffrom the last equation, we have
sin = x 2 6 .
DA T m L (mysxs | Byt My, "
Repeating for convenience
: . 1 :
x4 = 31, + 4T, + 37;) 3
X6 = 42 (T, + 6T, + 15T, « 10T)
1
x9 = m(fa + 8T, + 28T, + 567, + 3570)
o . 1
x1Y = z77(Tyg + 10Tg + 45T, + 1207, + 2107, + 1267,)
1
12 2 g (Tyy + 121, + 66T, + 2207, + 495T, + 7927, + 4627,)
xI% 2 gea=(T, + 16T, + 91T, + 36475 + 10017, + 20027, + 30037, + 1716T,) g
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? x'6 = )2;6B(T16 + 1674, + 12074, + 56074 + 1820Tg + &368T¢ + 800874 %
; + 11840T; + 6435Tq) (25) :
ot . 7 -3
: etc. %
: To shorten the notation, set p =z 7. Then ;5
‘ ' x 2 4 L6
i 9'!‘2"'9‘=P-p’17+953,?-p','1'+-" (26)

The desired Tschebychev series is
312—25 = agTg + 8272 + 8Ty + *+° (27)
Substituting and collecting similar terms,

1 3 1 5 1 7
0FP-TIP +T0P ~TgT28 P + °°°
The general term ¢, is given by f,

1 n 2n+1
¥ = -f-lz o] (28)
2ne1 222n_1 7mey C(2r, n)

The term-to-term recurrence ratio is
2

. 1 2n -1
= -F Sl ﬁr Y, (29)

N

w2n¢1

. 0.785398 163397 448309 62
' -0.040372 756094 140390 85
0.000933 897963 822270 06

-0.000011 430063 806930 39

0.000000 085684 836346 28

~0.000000 000432 447669 64

0.000000 000001 567473 35

-0.000000 000000 004275 39

0.000000 000000 000009 09 '

-0.000000 000000 000000 02 p-

ap 0.745947 960457 275642 10

In a like fashion,

1.3 15 1 7 1 s ... 2
82 % =T7P *+ TGP - TOTTP + TIIW P - '
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The genersl term V. is given Dy

g_lzn 22n+1
WZM, R TR R TS c(2n, n - 1)

Note the absence of the leading factor %-. Thet factor epplies only to Tg,.

The term=-to-~term recurrence ratio ie

12n -1 _p?
Yonet ®* "3 2n e+ 1 n -l¢2n—1

-0.040372 756094 140390 85
0.001245 197285 096360 08
-0.000017 145095 710395 59
0.000000 137095 738954 04
-0.000000 000720 746116 06
0.000000 000002 687097 16
-0.000000 000000 007481 94
0.000000 000000 000016 16
-0.000000 000000 000000 03
a2 -0.039144 567527 081957 02

Continuing

T ]

8y = o= p° - SraaT 7 ¢ = p? -
4 =73g0 P 76880 P 16566080 P
The genersl term V., is given by

- 2ne
JLnn ol hon n- 2)

2041 = 22"-1 12n +« 1

The term-to=term recurrence ratio ia

i

1 p?
w2n¢-1 = 1 n< v

s
4

[

n

+

0.000311 299321 274090 02
-0.000006 858038 284158 23
0.000000 068547 869477 02
-0.000000 000411 854923 46
0.000000 000001 679435 73
~0,000000 000000 004987 96
0.000000 000000 000011 31
~0.000000 000000 000000 02

8, 0.000304 509420 678944 41
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For any cosfficient e, (k =1, 2,3, «+¢)

n ne+l
Vet = S?nl}l_ 2o o 1 c(2a, n = k) (30)

The first term is obtained by setting n = k. The term-to-term recurrence
ratio is

1 2n-) p?
%n*1 = - Q Y zn + 1 L] n - k ‘bﬂ-1 (}1)

To complate the example, the rest of the calculations follows

-0.000001 143006 380693 04

0.000000 019585 105564 86

-0.000000 000154 445596 30

0.000000 000000 746415 88

-0.000000 000000 002493 98

0.000000 000000 000006 17

~0.000000 000000 000000 01

a4 -0.N00001 123574 976796 42

0.000000 002448 138195 61
-0.000000 000034 321243 62
0.000000 000000 223924 76
~0.000000 000000 000906 90
0.000000 000000 000002 57
-0.000000 000000 000000 01
ag 0.000000 002414 039372 41

-0.000000 000003 432124 36
0.000000 000000 040713 59
-0.000000 000000 000226 73
0.000000 000000 000000 79
a,p -0.000000 000003 391636 71

0.000000 000000 003392 80
-0.000000 000000 000034 88
0.000000 000000 000000 17
812 0.000000 000000 003358 09

-0.000000 000000 000002 49
N.000000 000000 000000 02
814 ~0.000000 000000 000002 47

816 ~ 1.4 X 10‘21
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As a simple yet powerful check on the caelculations, the aum of the coeffi- f
cients should equal the value of the function at x =z 1. (When x = 1, every
Tschebychev polynomial also equals unity.) In the present instance

i d-erfieinend

i . l‘-i:—ﬂ=%-’i" (x = 1)

) m-i.--mu kN

‘ When employing a Tachebychev series in the basic form, the values of the
‘ successive Tschebychev polynomials corresponding to the stated value of the

: argument are easily obtained by repeatedly epplying the proper trigonometric
: identity (three-term recurrence relationship). '

¥

When a Tschebychev series has been truncated for use, the maximum error in
the approximation is given (nearly) by the first neglected coefficient. The
equal ripple feature distributes this maximum error (smell though it be)
throughout the argument range. it is obvious, then, that restricting the
range of the argument will not reduce the maximum error. Again, this may be
less a fault than a faux pas.

Congider what happens when the principles of range restriction sre applied
before selecting a transfarmation.

Continuing to use the sine function as an example, suppose we let 6 = S¢.
Computing sin ¢, we recover the wanted function by means of the identity

sin 5¢ _ . #
sin ¢ ° 5 - 4 8in2 ¢{(5 - 4 8in2 ¢) (7) 3

But 4 need not exceed 9 degrees. Hence we can develop a Tschebychev
serjes for the trensformation

p =

~
Ol

All formulae remain the same. It is only rwceasary to substitute the new
value of p.

0.157079 632679 489661 92

-0.000322 982048 753123 13

0.000000 298847 348423 13

-0.000000 000146 304816 73

0.000000 000N00 043870 64

: -0.000000 000000 000008 86
. ag 0.156756 949331 824006 98

-0.000322 982048 753123 13

0.000000 398463 131230 B4

~-0.000000 000219 457225 09
0.000000 000000 070193 02
-0.00000C 000000 000014 76

a, -0.000322 583805 008939 13
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§ 0.000000 099615 782807 71 2
: -0.000000 000087 782890 04 L

i 0.000000 000000 035096 51 H
‘ -0.000000 000000 000008 a3 E:

a4 0.000000 099528 035005 75 5
2 3
; £

e -0.000000 000014 630481 67 g

- 0.000000 000000 010027 57 : =

B =0.000000 000000 003 16 : 7 _;

8g -0.000000 000014 6208457 26 _ 9
0.000000 000000 001253 45 3
=0.000000 000000 000000 70
ag 0.000000 000000 001252 74
84,0 ¥ = 7.0 x 10-20
The resulting economy is obvious.
A Tschebychev series is rarely encountered in its basic form. The compu-
tational power and efficiency of a simple polynomial in nested form is so
great that one cannot gainsay its use. Hence most Tschebychev series, after
truncation, are converted to this form by substituting for the T,'es end
collecting terms.
We illustrate, using
1ain X T T
x sin 55 = agTg + 82T, + 84T,
Thus
ain %%
—— = 8g + 83(2x2 = 1) + a,(8x4 - 8x2 + 1)
= (ag - a3 + a,) + (2a; - 8a,) x% + Ba,x4
Simplifying,

sin 75 = x(0.157079 632665 - 0.000645 963834 x2 + 0.000000 796224 x4)

Maximum error occurs at x = 1 and is lasa then 1.5 x 10-1', exactly as -
predicted by a,. The error of this approximation to % sin %% is shown {n

Figure 2.
Note that when a Tachebychev approximation has been reconverted to a sim-

ple polynomial form, there is no practical way to estimate the maximum error
by inspecting the resulting coefficients.
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IX, MAEHLY'S METHOD. A method attributed to Meshly developa a rational
function approximation from a Tachebychev series in much the same way that a

Padé spproximation is developed from a simple power series. The baaic form is
like

ag + T, + a,T, + a,T,y
1 + BTy + BT + B3T3

(32)

“ Yo+ YiT1 4+ Y272 4 v

Since the coefficients of e rational function are not unique, we can arbi-
trarily. choose any one of them, and so set Bg = 1,

As before, both sides are multiplied by the Maehly denominator and like
terms collected on the right. The multiplication requires use of the trigono-
metric identity

ToTn 2 Tom + Tnem)  (m S 1) (33)

It will be noticed that this uses terms of the basic Tschebychev series out to
a degree equal to the sum of the degree of the Maehly numerator and twice the
degree of the denominator,

The computations, if systematized, are less complicated than at first
appears. If we designate the product-series as

GoTg + %97 + &7, # G3Tg ¢ ceee (34)
then
80 =Yg + %(81Y1 + B2Y; + ByYy # BuYy + ceee)
8y =Yy + %31(2Y° +Y) + %BZ(Y1 +Y3) + %B;(Yz + Yg)
+ %64(Y3 +Ys) + %BS(YA +Yg) e
Sy =2 Y, %81(Y, + Y3) %BZ(ZYO +Y,) + %B;(Y1 + Ys)
+ %ﬁa(Yz +Yg) + %85(Y3 +Y9) # ecen
Ty Yy o+ 989(Yz # V) + 38,(Yy + Yg) + 38,(2Yg + Yg)
+ %ﬁa(Y1 +7Y7) + %Bs(Yz +Yg) 4 coen
Gy = Y4+ %61(Y, +Yg) + %BZ(YZ +Yg) + %B;(Y1 +Yy)
+ %B“(ZYO +Yg) + %85(11 +Yg) 4 ennn (3%)
etc.
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Within each set of parentheses, the subscripts of the vy, are given by
the sum and difference of the ¢, and B8, subscripts. (If a negative value
occurs, simply use the absolute value.) fihen the subscripts of g, and B, {
are equal, the coefficient vy, will appear and must be doubled.

Since any reasonable approximation will contain a finite number of 8 's,
each of the expressions for (4 will terminate. Notice that within each set
of parentheses the subscripts are either odd or even in pairs. This meana
that for odd or even functions, half the parenthetical terms will vanish.

It is now possible to develop a set of m+ n + 1 simultaneous linear
equations in the seme number of unknowns (the a.'s and 8. 's). That the
technique is adapted from the Padeé method is obvious. The wanted equations

PRI, AT L | S TG . o~ e .
el

are:

: % = T
] =6
E 1 1
% =%
: @ =&

0=g,
0T

0= 9

for the example form given.

Exactly as with the Pads®, those equations whose left member is zero are
solved for the 8,'8s, after which the a,'s are found by direct substitution.

The error curve of a Msehly strongly rasembles that of a Tachebychev
approximation, In fact, it is usually possible to select a Maehly and s
Tschebychev so that the error curves have the same number of ripples,
similarly spaced. Under these conditions, a linear combination of the two
approximations can schieve fantastic accuracy.

Let us illustrate the method, using the Tschebychev series for 2&2;25 H
p = ;%. The Tschebychev coefficients, previously computed, are repeated for
convenience:

Yy 0.156756 949331 824007
Y, ® -0.000322 583805 008939
y, = 0.000000 099528 035006
P ~0.000000 000014 620457
Yg = 0.000000 000000 001253

st ey
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We choose to develop a Maehly of the form

a +al
sin px . o 22 < M
X l « Bsz

The required equations are:

o =% " To Y2572
= =y 1
@ =6, =Y, + g8 2y, - Y,

o
n
Lal
"

]
+ = +
s 5 Y, 2iaz(wrz Y6)

The last equation yields 82 immediataly,
0.000617 067744 563840

w
~N
"

0.156756 849803 793512
-0.000225 854117 132272

=3
"

Now a, and B2 are coefficients of Tz = 2x2 - 1.

Hence

(o = o) + 20
(1 - 82) + ZBzx2

M=

The coefficients of s rational function are never unique. This allows us
arbitrarily to set any one of them. Let us choose unity as the coefficient of
x2 in the denominator. Thus, dividing through by 28,,

M = 127.200542 6502 - 0.366011 8658 x2
= 809.783804 9871 + x?

1f desired, a partial division will produce & form more suitable for
subsequent linear combination. Thus

0.523091 4995 x2
0.157079 632695 39 - 359.783804 9871 + x2

M

or, better still,

423.591024 8211
-0.366011 866803 83 + 809.783804 9871 + xZ

M

We wish to compare this approximation to the Tachebychev approximation

T = Yo + YZTZ + Y“T“
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which, expressed in terms of x¢, is

31nx *aTs (Yg = Y2 + vo) + (2vp - ByIx? + By x’

e L T
' Y

Yo - Y2 + Yq = 0.157079 632664 87

2y -~ By, -0.000645 963834 298

B -v-r_"'rm:"',"‘r‘*-n-:"r'??:'yn !Wf‘.,"-ﬁ e .\mm

0.000000 796224 2800

8va
An inspection of the error plots (Figure 3) suggests the linear combina-

tion 0.524 T + 0.476 M. Performing the multiplication and combining the k',
resulting constant terms, we get

gl e

ﬂiﬂ;ﬂﬁ =~ - 0.091911 921082 257
- 0.000338 485049 17211 x?

1 eI b

+ 0.,000000 41722! 522744 10 x°

. 201.629327 81484
809.783804 98711 + x?

an approximation so accurate that a thirteen-digit calculator could detect no
error.

Unfortunately, the functions which are encountered in real life rarely are
as well-behaved as is the common sine. But even though at first glance they
may look solution-proof, sometimes a little guile will go & long way. for an
example, let us return to that recalcitrant function, the inverse tangent.
Previously, we have seen thaet if 2z = tan 8,

aictan z 1.2 14 16, ... (9)
z =l-}z+5 “‘724‘

We can restrict our interest to 81 & 7, whence {z! < 1, but z is not a k)

suitable Tschebychev veriable. It is easy to see that the ratio of successive
coefficients of the Maclaurin series tends toward the limit -1, meking it
useless for computing Tschebychev coefficients. Moreover, the Tachebychev
series (for the transformation x = 2) converges rather slowly, requiring a
large number of terms for any stated accuracy. Altogether, a seemingly
formidable task, with a disappointingly cumbersome solution.

Let us employ some of the tools we have acquired. First, let

Z
y 2 ———2Z o (12)
1 /1 + 2%

214




,,,
i - -
“ e + M ) ~
i - (] o o ' ] 1
; ““ + WLH 1 WL .AJ w. 1 |y
,V ! § -4 <
; s H
; : seedberstasss -
1 aggag - E asds! s18330% 2 .11‘.m11 H
¢ 194 pugd 3 0 3
¥ 1ixiigflasy 1 EH
,.W H 1 HH HEHAN L R i O
P Hi HETHH o ] st isn it L1 b5 3nast fosteiandy
! + e r - = s H r 1.
ﬂ il i e o
t - a - -9 as -+ . -4 H1 [
P Rininr g . r : HHHTH HHTH H T R
4-. + 1 : - 111 H H
it it Hitl Tﬁ He 1R R H
" I FiRATTE H H it a8 [ E 1 fagpile o
. 3 Rt i i HHHH * 1 HHHTH HHHH
i il ' $ HE T 11 HHH : H 3 THHE U T H e Y -
P a¢ baetigisifits ! H HE T . ] : A
, 11« lu 1 H P .:. HH H n. : .: . (] bH H 1 : it Hi - iy
, 33213387 51 > T d u
' H +4 o4 -+ M 13 1 . $ ﬁl 1117 r H H1 .
HEPT A AT shidd Hariidiist H - m didpalifsdds i T T HEY HENIHINY MM n
- Hi- $ H 1 t r H r 4 2904 &y 2113 a 1T o
! Al i E R e R it ai i At e Rl n
4 TITTITST a s3spe Lo T H R = H s .
¢ HR . HEH it . TR T -
¥ _ r3psep 23 F Tt » - . ~
b T HA H I 1 1 gyge H Hi{{
; i T T kil i i 1 it e
. rrofrty A EEH H Bags ...Ux 1334 +4 HH
it ! g : e e T R

T

e~

inm

. dnm.
T
T

e et
L

1

va i

444 ot
4
e
et
1
-+
[

it

i 4

o
pros v

ppes
jona
g+ Tt
PLOSS BT M e Do4

3t ; iy i il t £ it e il
sl i I TR it
st G A A R R ikl e s

il g R R s d e i T R A T

TR T T L e e R e IR




TR L B T e e ¢ e ety 4 o e i

ip: 4o
ST

Then arctan z = 2 arctan y.

But if 2z <1, then |y} <« ———— =v7 -1

o
+ =
-
l~1
e S

We make the paremetric substitution y = px and set x = 1 when y = ¢y2 -1.

Thus, p = /2 - 1. This is a particularly handy transformation, since
p-' =2 +p and - p2 = 2p - 1. The solution then, is

arctan z = 2 arctan px

We will, however, compute the Tschebychev coefficients for

arctan px
x L *ZTZ + YATQ * (36)

in order to avoid a zero within the steted argument range.

ity
Bl e ypatrboa A

Now p is a constant (~p2 » -0,17157 --+), and hence the various
powers of p in

3 5 7 '
919%1.91:,,_2;,‘2,,%,,._%,6,... (37)
become part of the coefficienta. Convergence is quite repid, and the ' i.

computations are easily made on e programmable calculator. The resulting
Tschebychev series is:

arctan px

x =t VTt YT (36)
e —2(2+p) o= /T -1
1 « /T + 27

Y, = 0.403199 719161 511495 80
Y, = ~0.010749 968804 390963 96
0.000256 378716 684566 71
= -0.000007 264267 589573 12
0.000000 223914 266710 62
-0.000000 007256 851307 14
0.000000 000243 155037 30
-0.000000 000008 343268 SO
0.000000 000000 291421 29
-0.000000 000000 010320 90

.T”n.<.:mwﬂ,“,
-« < =
[~ - I - S -
wWowononwn

TRy -
< <
- -
@™ o
won
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Y,o = 0.000000 000000 000369 59 E:
Y,, = -0.000000 00000D 000013 36 3
~ -19 . - -20 :
Ype ™ 4.86 x 10- Y, ™ -1.78 x 10-2 i
: ) From these coefficients, let us compute the simplest possible Maehly: ).
e B;
Q ‘Z
M= 1+ g 1 3
: 22 §
% R P LA
i s - 1
0=¢, =y, +38, (2vg + v,) {
b -y 4
| B, = : !
g Y0 + 7Y, E
' 8, = 0.026653 173701 372558 84 L
: a, = 0.403056 458768 597611 48 1
; Thus,
b
g M= Qﬂ = ao 1
3 1 +8_(2x2 - 1) (1 - B_) + 28 x2
.E 2 2 2
E Dividing through by 28,,
] arctan px _ ___ 7.561134 431579
x T 18.259492 044066 + x?

The relative error in this approximation does not exceed 2.9 x 10-4. Figure 4
compares this error with that of the simple Tschebychev approximation
T =y, +7,T,. Also shown is the error curve for the linear combinatinn

1.78981 M - 0.7898]1 T.

This error curve (for the linear combination) is shown on an expanded scale in
; the lower graph, where it clesrly reveals the shape of the SECOND missing
- Tschebychev polynomial. It can be shown that the linear combination method
o produces an approximation virtually as accurste as the Tschebychev (or Maehly)
of next higher order.
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X, ASYMPIOTIC SERIES --- A LOOK AHEAD. The authar presently is investi-
gating the theory of ssymptotic series. First results are very promising and
may warrant & future psper. Some tentative findings are:

1. To be useful, an asymptotic series must be an alternsting series.

2. Provided the value of the argument is not too small, there will be a
smallest term which is not the first term. "Smallest" is taken in the sense
of the absolute value. There may be two consecutive smallest terms (equal in
absolute value but opposite in sign, of course).

3. After the smellest term, the series diverges. None of these divergent
terms stould be included in any approximetion.

4. Truncetion immediately after the smallest term produces an approxima=-
tion which errs less than that produced by truncotion at any other point.

There is a widespread --- but mistaken --- belief that this represents the
best aporoximation of which the asymptotic series is capable. It is simply
not true, as we shall see immediately when we pursue the New Look.

5. If, in place of the first divergent term, there is substituted a temm
of like sign whose sbsolute value is exactly half the absolute value of the
smallest term, there is a definite reduction in the error of the spproxima-
tion, often by more than an order of magnitude.

6. 1If the remaining error is plotted as a function of the argument, it is
seen to be @ “sawtooth.” See [9] for en example. This function appears to
possess continuous derivetives. If so, it is a sufficient condition for the
existe?ce of an exact analyticel expression (e.g., a Fourier or Tschebychev
series).

7. Discovery of such en expression is the next logical step. (Only an
approximation was developed in 1{9].)

8. The composite expression should converge for all values of the arqu-

ment down to include the point where the sum of the first two terms of the
asymptotic series is zero, thereby reducing the totsl expression at that point

to something like f(z) = % + e(z). For two commonly used asymptotic series,
this minimum value of the argqument may turn out to be:

for 1n,I(z), z = +/5 = 0.289 ({2] end {8]).

for erfc z, z = 32 = 0.707 ({9]).

219

I L




A Wy,
B e L
\ .

APPENDIX A

AN ALGORITHM FOR SQUARE ROOT

Before ectually developing an epproximation, let us address a few ancil-
lary matters.

First. The Newton-Raphson technique. If r, is any reasonable estimste
of Yz , then

1
P1’1 H 5 [.ri + 'rf]

is a better one.

The process can be repeated endlessly end is found to converge quadraticaelly
upon the true velue. Examining the form of the iterative equation suggests
that the first egstimate be in the form of a rational function approximation,
since if r, = N/ps then

_1 (N, 2Dy _ N2+ 2D2?
ez lge N ="mn (38)

thereby saving a division. In fact

_ 1 [NZ + ZD2 220N ]
-2 20N * N+ D¢

1 [(Nz + 2D2)2 & azDzNZ]
2 20N(N¢ + 2D%)

_Né_+ 62D2N2 4+ 22D4
° 4DN (N2 & 2D2)

(39)

and still another division ia saved.

Second. The bilinear transformation. Simply stated,

WZ +ew+br4+c=0

w and 2z are variables, a, b and c are coefficients, any of which might
be complex. Should the term in wz appear with s coefficient other than
unity, division by that coefficient will produce the above form without loss
of generality. The expression can be regarded as linear in w or as linear
in z, but is NOT linear in both together; hence, the term "bilinear." It is
easy to solve for either varieble in terms of the other, viz.,

WZ 4+ 8W = -bz~cC

- bz -~ ¢
We TS (a1)

ot i 20 i ok dadari b - 2 i
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Two (or more) successive bilinear transformations can always be replaced by a
SINGLE bilinear transformation (with, of course, different coefficients). Let
us examine the bilinear tranformation

Solving for 2z,

z = l + w | (42)

As z varies through the argument' range 0 to ®, w varies from =1 to «+l,
suggesting that a transformation of this or a similer form (b = -1, ¢ = a)
will be useful for square roots, logarithms, or any function whose argument
myst be non-negative.

Third. Catering to very large arqument ranges. Superficially, it would

seem that the bilinear transformation would be enough. But we find severe
warping near the band edges (a8 w + t1 in the above example). This
introduces an acute ascaling problem similar to that of the tangent function
near 90 degrees. Cleerly, en additional device is needed.

A possible approach is to develop seversl approximetions, each for use
with a different stated srgument renge. Since this method would seem to
require more perseverance than ingenuity, it will not be further pursued in
this paper.

Instead, we shall cgefine a process and call it "normalization." Basi-
cally, it amounts to a transformation which separates a floating point number
into exponent and mantissa. The floating point number cen be expressed to any
convenient base. The approximation is applied to the mantisss, after which a
suitable inverse tranaformation recovers the desired result. For the square
root, this emounts to dividing by any arbitrarily chosen perfect square, com-
puting the aspproximation, then multiplying by the perfect root.

Z
G:k/-l""z'

A suggested algorithm follows.
Consider separetely 0 ¢(z<1 end 1 ¢ 2 < w

Denote the latest transform by *.
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Cage 1. 1 € z2{ =
(:¥ enter 2z 4::> %

3
b

z* = z x 10-16

h* = h x 108 .

™ =z x 1074

n* = h x 102

0.042

5h

~N
'
Hou

Apply the approximeting function to the "normalized"
argument, z*. Call the result f(z%). o

cac i il

L '.

f(z) = h*f(z*)

( ENDJ
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Case 2. 0 €2 < 1.

tither apply the "normalization" algorithm to the reciprocal, , Or

raplege all the constants within the algorithm by their reciprocals (amd >
by <. '

~nila

The resulting normalized argument will always lie in the range 0.2 € z* €5
This suggests the bilinear transformation

. =1
Px = 5% 1

Setting x = 1 when z* = 5, we find that p = .2; If we can find a power

series for the square root function, it should be easy to compute the
Tschebychev coefficients for this transformaetion, and hence the Maehly
rational function.

Now
oo frox, Uepi(lcpd (a8)

Thus
(1 - px) 2% = (1 - p2x2)1/2 (85)

and the right side can be expanded by means of the binomial theorem, yielding

YT o pZxZ 2 1 = &+ p2x2 = 1 poxt - 1 péx6 - 2. p8x8
1 -pixt 2l -3 p2x2 - g pixh - o2 péxé - 575 pix

- =l p10x10 o 21 p12x12 o 33 16414 o ..
75 P % 1024 P X 2048 P %

The general term (after the first) is

-12n2 panzn

220-1 |5 |-t (47)
and the recurrence ratio is 32,%—3p2x1. Ingerting the value p = %, the
2 i2n-2 x2n 4n - 6
general term becomes -~ 37;—7;-7-—7 and the recurtrence ratio ~Sn x2,
Ne

The series for computing the coefficients of the Tschebychev series require
the additional multipliers (for the general term) of

12n

Z22n-1

in-8 {nea
n-3 12«2

where Yz. is the Tschebychev coefficient being computed and WZH is a term
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of the series used to compute it. Temporarily skipping over the problem of
computing vy,, we find that the firat non-zero term in the series for Y2
(e =1,2, 3, «-+) occurs when n = a. The expression for it simplifies %

-8 {2n-2

g¢n 1o lnd

2n-3 2n-l
5 The recurrence ratio is jL—;z;zlé'grj"l-

: It is found thet the second term of the series for Yo 18 identicel with
St the firgt term of that for Y, The recurrence ratio is ghe same. Only the

value of & is different. aherefore we compute this term, regset a to zero,
and gum the resulting series --- yielding, of course, Yo = 1- '

PIFFY TN ey REb e T
. ' I r
, v .

Thus we have the Tschebychev series

3 (1 - px) /2% =Yg+ YTy v, Ty + e (a8)
3 where
2 s 22 =1 =2
E, PX = 2% 1 P=3
: Yo = 0.877328 215224 7546
Y = -0.126982 320508 2891
Yo = -0.004619 211325 3075
Yo = -0.000336 513800 0460
Yo = -0.000030 660625 1123

Yip = -0.000003 129636 9144
Yyz = -0.000000 342323 7095
Y14 = -0.000000 039230 6243
Y1 = -0.000000 004649 4341
Y19 = ~0.000000 000565 1841
Y20 = -0-000000 000070 0800
Y52 = <0.000000 000008 8292

Y24 = =0.000000 000001 1270
Y,6 = -0.000000 000000 1454
Y, = ~0.000000 000000 0189

Y3p * ~0.000000 000000 0025 3
Y32 = ~0.000000 00NDOO NOD3 '
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It seems possible that a Mashly as simple as

a +alT

- - -0 22 _N
(1 - px) /2 1+ 8,1, D

! RKIRERRI s
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L DY o et :-n-n'ml"ﬂ'év'%
D
o
C il
o
. t '
i
[
|
|
t
I
1{

hay be sufficient for our needs. Before computing the Mashly coefficients,
howsver, let us take notice of how the bilinear transformation we have used
simplifies the application of the Newton-Raphson technique. Of course

N
T 2000 - px)

e b e car s e

Then

" =1 N %__L).l"".g_ﬁl_-_ﬂl
é L, =1 [Dil - T (- px) N ]

r o= N . 0(1 + px)
2 ~ 20(1 - px) 2N

which combines to

. N2 + D2(1 - p2x2)
2 20N(1 - px)

3

In similar fashion,
. N2+ D2() - p2x2) ___lm%l__g_mg__
Fy = 4DN(1 - px) * NZ 4+ DI(1 - pZx?) (49)

which states the final solution in terms of the original Maehly epproximation.
The Maehly coefficients ares

0.881935 217627

%

82

~0,190474 825654
8, = -0.072561 319783
Since the coefficients of a rational function are not unique, neither are N

and D --- only their ratio is. Thus there are s limitless number of forms
in which they cen be expressed. Perhaps the aimplest is

3 . 11.08452 - 3.93753 x2
(F-x) /2% 7.39072 - x2
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In final form

N? 4 D? (% - x?) DN(% + x)

2% +
| AON(T - x) N+ 0¥(F - xD)

An alternate form:

Let u = %(% - x) and v = %(% + x)
- . 1+ uv v
Then /z* = 4u 1 + uv

The relative error of this approximation at x = 1 (z* = 5S) is less than
10-'>. We use this relative error to estimate the precision with which we
must state our Machly coefficients. Twice taking the square root (to remove
the Newton-Raphson effect), we multiply the result by the least coefficient.

3.93753 x 10-'%/4 = 7 x 10-%

This result suggests inclusion of the fourth digit after the decimal point.
The fifth is shown, but is superfluous. In fact, expressing the approximation

as

11.08 - 3.94x2 N

3 T -
(7 - x) /z* 7.39 - xZ__ =D

results in & relative error (0.2 ¢ z* < 5) of no worse than 3 x 10-12,

It is interesting to note what happens when the Maehly rational function
is extended to

ag + °2T2 + “aTa N

(L -p) V28~ T TRt D

after which the Newton-Raphson technique is applied only once

9 1
Yo + 28272 + 2847y

ag = §p =
1 1

Gy = Ty = Yy + 3B8,(2vg + v,) + 38,(y, + vg)
1 1

ay = ¢4 = vy + 780y, + ¥g) + 78,(2vy + vy)
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0 =3¢=vg+ ';'BQ(YQ + Yg) + '}Bq(Yz + Yy0)

1
0 Cg = Yg + %82(75 + Yig) + 3B4(Yq + Yy2)

Computing,
a; = 0.891040 789794

= =0.316214 857627

&
[

a, = 0,011427 219988 b
=0.216071 134840

w
~
9

= 0.002611 917418

w
&
]

Simplification results in
(2 - x) /TF = 87.4847865 - 51.9623632x2 + 6.5625467x4
2 58.3231998 - 21.6812755x° + x

D(% + x) 1l + uv
2N T 2u

N +
20(% - x)

/2% =

At x =1 (z* = 5), this epproximation errs by 10-13. To obtain that eccuracy,
the coefficients must be stated to five or six decimel places (seven are
shown) .

APPENDIX B8

Cuet ROOT

Many of the problems involved in computing the higher roots are similar to

those of the square root and submit to similar solutions. Additionally, the
odd-numbered roots admit negative values of the argument. So eaying, the
matters of "normalization" and accounting for sign are left to the reader.

To develop e power series for cube root, we employ the transformation

L2t -1
= £

Solving for 2%, 2% = 1 éi—:Linli 8o that
° 9 ’ T -px - (1 -px)3 B0 the

(Qepx)?z® 2 (1 - px)Z/’

px

2 1 4

7 14
- mp‘lxﬁ - mp5x5 - tee (50)
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‘Let us develop & Padé approximation of the form

2y 343
1l «+ a,px + egp xt + a,p’x

1 4 b,px + b,pix? (51)

(1 - px) = -

Ot -

With a Padé, it is a matter of indifference whether we restrict the argument
range before or efter developing the rational function. Therefore, in the
interest of convenience, set p = 1. The simultaneocus system of equations then
is

1 =1
- 2
ay = b, -3
_ 2 _1
8, =b,~3b, -3
- 2y 3 _ L8 p
83 =0 -35b, =35 - & P
3
1 4 ? 9
0 =0-0-g3b, - 33by -~ 733 :
4 7 14
0 =0-0-0-gyb, - 333% =~ 535
Solving,
14 7
by = =73 b, = 35
__8 .2 . _ .4
A = =% 8, =3 93 = - §1

Dividing both sides of the expression by 1 - x and multiplying all
coefficients by their L.C.D. vyields

% o 405 - 648x + 270x2 - 20x3
= 405 - 783x + 441xZ - 63x°

It is desirable to choose an argument range (for the "normalized" variable)
the ratio of whose end points is a perfect cube (e.c., 8). Noticing that «x
passes through zero as z* passes through unity, we can see at once that

% < zi {1 and 1l < z; <8 will be a good choice for these end points. It
turns out that {n the range 0.35 < z* < 2.8, the relstive error is less than
S x 10-4., However, we can do nearly an order of magnitude better than that.

The two term divisor enables us to use the original series es a Padé (of
which it is & special case) and write, after multiplying by 405

S 405 =270 45 =20
405 -405 0 0
228
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 Subtracting and reducing to lowest terms, we find

A 0 6 -3 0
0 6 =7 1

The Padé is "optimized" at P - 0.84 from which

o 805 - £52.8x + 278x2 = 20x3
= 405 - 787.8x + 446.6x¢ =~ 63.8x°

Within the argument range 0.38296 < z* < 3.06853 the relative error does not
exceed 7.167 x 105, The ratio of these end points aslightly exceeds 8 —- a
perfect cube --- so that the upper limit of 2z* (for which the “normalizetion"
routine searches) arbitrarily can be set anywhere between 3.0637 and 3.0685
--- say 3.,066.

For any odd-numbered root, there is a specialized edaptation of the
Newton=-Raphson technique which converges more rapidly then any other. Before
developing it, however, let us review Newton-Raphson in simple form:

Let f(y) =2z ~ yn (hn=3,57,9, ...)
f'y) = -nyn-1

Suppose we have an estimate of the root, y,. We also know that at the
true root, y, f(y) = 0. This enables us to write the approximation

fly ) -0
Yy = ¥

~ f'(y1) (52)

Now y 1s the only unknown, but this is only an approximation, so we will not
recover y, but y,» another (and hopefully better) estimate. Subatituting
and rearranging,
fly.)
yz = y1 - f‘l(y1)

z-y"N
y2=’1+_'E“_}T
1 4
v, 2n [(n-Dy + ;Twrr] (53)

Examining the second derivative, it is found that
f''(y) = =n (n-1) yn-2, (54)

The curvature is not negligible, and increases with higher roots ---
introducing error into the epproximation and thereby slowing the rate of
convergence.
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We could just as well have written the original exprasssion in the form

n-1
y ¢ fly) z2-y" (h=3,5,7,9, ) (55)

The left aside is still a function of y which drives to zero at the desired
n-1

root. But y_7— =z 0 only for the trivial cese y = z = 0. ' Thus we can apply

the Newton-Raphson technique to

. net
f(y) = -;f—.l- - y_r (56)
e
y
But now look at the derivatives!!
1 n+ 1l o
Friy) = = (O3 -5 - 5=y T (57)
~Z
Y
and
2 2 n-3
Fro(y) = (2 ; 1) ’;%j - ; 1y y 2 (58)

Y

It is seen that there is a point uof inflection exactly at the desired root.
Thia means that as the estimate spprosches the true value, the slope becomes
virtually constant, thereby hastening convergence. The rate of convergence is
never worse than guadratic, end ultimately tends toward order of magnitude n.

Perhaps this process is best expressed in digital filter form; i.e., as an
output/input ratio. Thus

n
Z& i (n+ Dz + (n l)yL (59)
Y, (n=-=1z+(n+ l)y1n
For the cube root, this reduces to
3
Y, 2z + Y,
£ . (60)

3
| z + Zy1

To cite an example, we find the following errora i{n the approximation to

32.5 s

after Padé (“"optimized"), -0.000092

after modified Newton-Raephson, -0.28 x 10-12
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APPENDIX C
LOGARITHMS TO ANY BASE
The argument is "normalized"” to s value in the range 3.165 > z* >
(3.165) "', " The ratio of these two limits slightly exceeds 10. The method is

strikingly similar tu that used for square root. The parameter h is set to
zera.

If z# = z *x 10°",

then h* =2 h + n. o (61)
After the approximation has been gpplied, |

log, z = log, z* + h*log, 10. (62)

The most commonly uased bases are 2, e, 10, and 16. The necessary constants
aere found in the firat part of this paper.

We develop @ Maehly rational function for ln,zfr using the transformation

* -1
px = i‘ T 1) P= 0.52

% o 1% pX
Thus z* = 1 -px '’ and
3 5 7
1 p P p v
Telnez* = p+ By x? 4 Bo b L B 6, (63)

The coefficients of the Tschebychev series are now computed. They are:

0.546850 950695 9441

=<
o
"

0.028096 097358 074l

=<
N
"

0.001314 425494 3168

&
[]]

0.000073 490993 0960

o
1}

Yg = 0.000004 482077 7161
Y,o = 0.000000 287824 8525
Y,, = 0.000000 019125 8782
= 0.00000C 701302 1921
Y,¢ = 0.000000 000090 2873
= 0.000000 000006 3490

-
-]
?
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Y,p ® 0,000000 000000 4515
0.000000 000000 0324

-
~
~

"

0.000000 000000 0023

= 0.000000 0O0ONO D002

<

~

o
]

A Maehly rational function of the form

E - L e i N A A
k 2x" e : 1 4' Bsz + BQTQ +* BGTG

is now developed.

0.543339 498483 1167

-0.108861 411680 5337

Q
~N
"

0.002641 510414 0964

E——

~0.000008 962142 2536 g

Q
o
1]

-0.250375 253205 3509

w
(0]
L]

0.008877 426771 5024

w
&
"

~0.000076 902174 0061

w0
o
[}

At x = 1, (2* = 19/6), the reletive error is -4.957 x 10-12,

APPENDIX D

f : RECOVERING AN ANGLE FROM RECTANGULAR CO-ORDINATES

Let us label the sides of

a right triangle X, Y and R. R y
!
E e
3 X
i Given any two, it is required to
F ‘ find the angle 4.
We have immediately that R% = X% + YZ, (64)
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Most programmers unhesitetingly (and unthrinkingly!) aelect one of the common
ratios

{-:tane,%zaine,%-.-cose

1 and compute the inverse. There are serious objections to this cavalier
approach:

(1) Near 6.z 90°, tan 6 presents scaling difficulties as the slope
increases without bound.

(2) Also near 8 = 90°, sin 6 becomes a moat imprecise measure of
angle, since the slope epproaches zero, rendering the function insensitive to
changes in the argument.

g

(3) Near 8 = 0, cos 6 exhibits the same disadvantages, plus the
additional one of failing to change sign as 6 passes through zero.

The answer usually is taught during the first week of most college trigono-
metry courses, then promptly forgotten:

0 Y
ten 3 = X + R

(65)

1 The function tan % behaves very well indeed. Provided -‘% < 8 < % ’

the absolute value of tan'% varies between 0 and 1, while its slope

varies between 1 and 2. This fundamental identity aeppears in many forms,
two of which are

ten & = sin g _ tan ¢
27 14+cospg - —
1 +/1 4+ tanc ¢

Applying the identity a second time yields (since
Y2 + (X + R)2 = 2R (X + R)):

tan 4 < Y (66)
(X + R) + /2R(X + R)

N T Y T S T Y I S R

For simplicity in notation, let Q = /ZR(X + R). Then

TETHIP S TP |

¢ it R

Y
(X+R=Q) +« v2[I2R + Q (X + R)

ten £ = t

8

v e —————

D eas

or

t = tan £ Y (67)

B-(X+R+Q)+/7QZX+' R+ Q)

TR PR
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The Padé approximation now is used to recover the angle 8 . It is

189 + 147t2 + 12.8t4
8 = 8 arctan f = 8t (‘139 + 210tZ + 45t% )

The error in 8 is less than 2.2 x 10-'0 radians.

Combining factors and employiig i< ~¢ nolynomial form yielda

o o alanent? ¢ 1176)¢2 +.1512}
radians - T AcEed & 210)t2 & 189

or
] _ & (228,862 ¢ 10112)87 + 18104
deqreas - x (3tZ2 + 1a)t? + 12.6

It is to be remarked that in order to schieve this accuracy, a Maclsurin
series would have to employ the t13 term, while a Tschebychev series
requires six coefficients expressed to 10-digit accuracy.
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M0S TRAINING COURSE. SELECTION . N
CRITERIA: AN APPLICATION OF DISCRIMINANT ANALYSIS

Pat Cassady and Lounell Snodgrass

Analysis Branch 11
Training Effectiveness Analysis Division
US Army TRADOC Systems Analysis Activity
White Sands Missile Range, New Mexico

tae e [ R

A I. INTRODUCTION
 This is a study of criterfa by which soldiers are selected for Military

Occupational Speciality (MUS) training schools. Three distinct MOS's and

M A R BT S T PR
. - AW ean 1 .

their associated training courses are considered. For simplicity, they will

be referred to as MOS A, MOS B, and MOS C.
Intelligence screening of new recruits is accomplished with the Armed

Mot it indalid

Forces Qualification Test (AFQT). Job or occupation qualifications are

k determined with the Armed Forces Vocat1orial Aptitude Battery (ASVAB). These

tests are described in Tables 1 and 2. In the development of ASVAB, training
cour se performance was taken as the measure of soldier performance. Aptitude
composites were developed to maximize validity coefficients. Consequéntly,
the canposites are composed of several tests and are highly intercorrelated.
For a description of the development of the aptitude composites see Fuchs and
Matfer (1973, 78). Composite scores normally range from 40 to 160, with an
average score near 100 and standard deviation near 20.

Typically the selection criteria for a specific training school (course)
will consfst of a minimum score on a single ASVAB composite. Unlike raw test
scores, aptitude composites are maintained in a soldier's personnel file where
they can be easily obtained by a particular school. Rarely, minimum scores on

two canposites may be required. As ueapon' systems, the Army popul ation, and

training courses have evolved; some schools have experienced high attrition
rates. TRADOC Systems Analysis Activity (TRASANA) was asked to study samples

fram three MOS school (courses) and recommend improved selection criteria.
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- | TABLE 1
TESTS IN THE ARMED SERVICES VOCATIONAL APTITUDE BATTERY (ASVAB)

— CRTEGORY. TEST TITLE TEST SYMBOL
General Ability Arithmetic Reasoning AR
Tests General Information GI
Mathematics Knowledge MK
Science Knowledge SK
| Word Knowledge WK

|

{

| Mechanical Ability Automotive Information Al :
| Tests Electronics Informatiot:- £l 4
| Mechanical Comprehension MC 4
| | Trade Information | TI j‘
I .

| |

| Perceptual Ability Attention to Detail AD |

| Tests Pattern Analysis | PA

: |

| Classification | Attentiveness Scale CA

| Inventory Combat Scale cC

| Electronics Scale CE

i Maintenance Scale CM

|
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TABLE 2

APTITUDE AREAS AND RELATED ARMY JOBS

Aptitude Area
SymboT TTtTe

Composite
ACB Tests'

Major Related Jobs

W AT A e e

co Combat

FA Field Artillery

EL Electronics Re-
pair

of Operators and

Food

SC Surveillance and
Commun {cations

MM Mechanical Main-
tenance

(] General Mainte-
nance

cL Clerical

ST Skilied Technical

GT General

AR+TIPA+AD+CC

AR+GIMK+EI+CA

AR+EIMC+TI+CE

GI+AI+CA

ARHWK+MC+PA

MK+AT+ET+TT+CM

AR+SK+AI+MC

AR+WK+AD+CA

AR +MK+SK

ARK

237

infantry, Armor, Combat Engineer
Field Cannon and Rocket Artillery

Missiles Repair, Air Defense
Repair, Tactical Electronics
Repatr, Fixed Plant Communfcation
Repair

Missiles Crewman, Air Defense
Crewman, Driver, Food Services

Target Acquisition and Combat
Surveillance, Communication
Operations

Mechanical & Air Maintenance, Rafls

Construction and Utflities,
Chemical, Marine, Petroleum

Administrative, Finance Supply

Medical, M{litary Police, Intelli-
gence, Data Prccessing, Air
Control, Topography and Printing
Information, and Audio Visual

Used only to qualify for special
tests, as Officer Candidate Test
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Of course, high attrition rates might be remedied by improving the courses.
This remedy has been done; however, this was not part of the TRASANA study.

I1. DATA
One sample was provided for such MOS. The current selection criteria,

- the number passing and failing, course scores, ASVAB composite and AFQT scores

were available for each MOS sample, _The type of failue -academic,

non-academic was known for MOS C. These data are summarized in Table 3.

TABLE 3
| MOS | CURRERT | NUMBER “NOMBER | WUMBER
SELECTION PASSING FAILWRES NOM-ACADEMIC
CRITERIA COURSE » FAILURES
l l
A ] ELY 90 114 69 N/A
[ 390
| | l l
B | EL>90 227 78 | N/A
C JEL>120 109 | 73 | 23

1. ANALYSIS

Stepwise discriminant analysis was the technique chosen to determine
improved selection criteria. This method produces a linear combination of
ASVAB composites which best discriminates between the pass and fail groups.
This 1inear discriminant function allows the incorporation of posteriord
probabilities and the costs of misclassificatfon. The resulting
classification procedurc minimizes the expected cost of misclassification
under certain conditions. For a description of discriminant analysis see A.A.

Afifi and S. P. Azen or T. W. Anderson.

238

('

TR RN 1 T TR P



L

TS

mprangs =,

B sl s B

A. MOS A ANALYSIS
This analysis produced MM and ST as the variables which best

- discriminate between the two groups. For simplicity of application, selection

criteria are traditionally given as minimum scores on one or two (rarely)

composites. Consequently, the linear discriminant function is not a

 practical classification tool. To determine a more practical classification

procedure, the 114 sample cases were ranked first by MM, then 'by ST. The
following classification procedure was then determined: 1f MM > 100 and

ST > 100 classify as pass; otherwise classify a5 fail. A graphical comparison
of the two procedures is given in Figure [. The attrition rate using the
proposed MM/ST criteria would be 15.5%, while reducing the number of soldiers
chosen for the course by 56 (see TABLE 4).

An alternate criterion, proposed by Army School A, using EL > 105

was also considered. Course attrition and the course attendees available for

this sample are shown in TABLE 4.

TABLE 4

RELATIVE EFFECTIVENESS OF THREE ALTERNATIVE COURSE
SELECTION CRITERIA FOR MOS A

“SELECTION | ATTENDEES | ORADUATES | NON-GRADUATES ATIRITION
" CRITERIA "~ SELECTED RATE (%)
|
{ACTUAL : l
|
{ EL & CL > 90 114 69 13 | 39.5
|

ALTERNATIVES: |

MM > 100, 58 49 9 15.5 |

ST > 100

EL > 105 56 42 14 25.0
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B. MOS B8 ANALYSIS

This analysis was different from the MOS A analysis sﬁce all
criteria considered included the original EL criteria. The discriminant
analysis chose SC as the best predictor of passing or failing the MOS 8
course. Chi-square tests ware performed to test for the independence of a
'selection‘cr.iteﬂ-on' from the pass or fail clasﬂﬁcat‘lon. Table S summarizes
the proposed criteria, their attrition rates, and the' number of soldiers
selected fram the sample.

TABLE §
RELATIVE EFFECTIVENESS OF ALTERNATIVE COURSE SELECTION
CRITERIA FOR MOS B

| -
__CRITERIA _  SELECTED' ' | __RATE (%)
ACTUAL:
ER% 308 L
ALTERNATIVES:
EL9S 235 18 51 Co2.7
EL>100 157 R &7 2 15.9
EL > 90 132 116 16 12.1
SC ¥ 100
EL > 90 182 154 28 15.4
SC 3 95 .
I ' !
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C. MOS C ANALYSIS:
This analysis also considered the original criteria (EL > 120) as a
necessary condition for any new criteria since the sample used for the

discriminant analysis was chosen by this criteria. The discriminant analysis

. ; v
O YRRTRPYTISe: 12 VRN T h e LA

.chose GM as the score that best discriminates between pass or fail groups
(academic failures). The non-academic failures were not included in the
analysis. Chi-square tests were performed to test for the independence of 2
selection criteria from the pass or fail classification. Table 6 summarizes
the proposed criteria, their attrition rates, and the number of soldiers

selected from the sample.

TABLE 6
RELATIVE EFFECTIVENESS OF ALTERNATIVE COURSE SELECTION CRITERIA FOR MOS C ,‘

| CRITERIX _ SELECTED - RATE (%) ]
ACTUAL: 1
EL120 182 109 73 40.1
ALTERMATIVES : 3
EL125 103 69 34 33.0 g
EL130 56 46 10 17.9 i
o120 - 102 s 2 s | j

;
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IV, SUMMARY
The proposed criteria that best discriminates between graduating or
non-graduating from the MOS A course were an MM > 100 and ST 2 100. The best
selection criterfa for MOS B were EL > 90 and SC > 95. Finally the most
promising selection criteria for MOS C were EL > 120 and GM > 120. These
conclusions are based on the alternate criteria that lower course attrition

while do not substantially reduce the attendees selected.

V. POINTS OF DISCUSSION:

A. The data for the MOS A and MOS B analysis contained no distinction
between academic and non-academic failures. Since ASVAB camposites are
fntended to indicate subject aptitudes, théir use to predict non-academic
failures rn'lght. be questioned. Depending on the sample their inclusion or

exclusion could significantly alter the conclusions.

B. Al) samples in the study vere selected from current courses.
Therefore, all cases met the current selection criteria for each sample. For
MOS B and MOS C the current criteria were included as part of the new
criteria. For MOS A the current criteria was omitted. The justification for
this is that current criterion is not very restrictive. The statistical

Justification for such a generalization is lacking.

C. In the MOS A analysis a ranking procedure was used to develop
absolute cut-off scores for a classification procedure. The relation of such
a procedure to that of the discriminant function and its “optimal“ properties,

if any, were ignored.
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THE ARMOR COMBAT FOR MODEL SUPPORT (ARCOMS) FIELD EXPERIMENT

Roger F. Willis
US Army TRADOC Systems Analysis Activity
White Sands Missile Range, New Mexico 88002

ABSTRACT.

The Armor Combat Operations Model Support (ARCOMS) Test, Phase II, is a
force-on-force field experiment aimed at collecting target acquisition and
engagement data for use in the design and running of combined arms simula-
tions and war games. TRASANA {s the proponent and the test will be conducted
by TCATA at Fort Hood in January-February 1981. Tactical realism would be
unacceptably sacrificed if certain key variables were controlled. Due to
resgurce constraints, very few replications can be run under given conditions.
This presentation will pose the question (specifically for ARCOMS) of how to
extract the maximum amount of valid information from relatively uncontrolled
field experiments (operational tests) carried out with very small sample sizes.

1. Background.

a. ARCOMS will be the first in a series of field experiments carried out
to provide better input data for combined arms models and war games,

b. It has been recognized for years by the modeling community that we do
not have adequate data on attacker detection rates, in realistic force-on-
force conditions, and on attacker engagement dynamics and fire distribution.
The ARCOMS test also presents the opportunity to gain valuable insights con-
cerning alternative attacker tactics and defender detection rates and defender
fire distribution.

¢. For the first time intervisibility between combat vehicles will be
measured dynamically and recorded automatically.

2. Purpose.

The purpose of ARCOMS {s to examine the combat processes in a force-on-force
environment and to provide input data for TRADOC combined arms models, simu-
lations and games. Emphasis is to be placed on identifying the process by
which the attacker acquires and uses information during the attack. Data on
detection probabilities will be keyed to the times at which intervisibility
starts., TRASANA will use the data to develop algorithms and to provide input
parameters for the revisfion of combat models. In addition to serving as an
empirical source for probability distributions and cther data for models,

the ARCOMS test outputs will be used for testing a number of hypotheses about
the basic nature of combat processes.
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3. Scope. ARCOMS will consist of a series of force-on-force experiments of a
platoon-sized unit defending against a company force, with deliberate variations
in terrain and attacker tactics. This phase will examine intervisibility, the
fire and maneuver interactions. To the extent possible, low visibility condi-

tions will be considered.

4. Gross Design of Test.
a. The conditions for the twenty-four test runs (individual battles) are

defined in Table 1. Four major factors are varied: attacker tactics, type of

defense, light level, and terrain type (A or B). Note that we will not have
enough runs to investigate some of the interactions that one suspects might

be important. For example, the rapid approach tactic will not be run in Type 8
terrain; there will be no night trials in Type B terrain; and the rapid approach

tactic will not be run at night.

b. It will be possible to develop estimates of the impact of some of these
major factors on key measures (e.g., on average attacker detection rate). For
the impact of “light level” we will compare run set A with run set B, or set E
with set F. For the impact of "attacker tactics" we will compare set A with
set D (or set E with set H), etc. In order to increase sample sizes in some
cases we will lump sets together. For example, we get a sample of six battles
by lumping set A with set E, assuming that the differentiation between hasty
defense and deliberate defense might not be sfgnificant (for some measures).

5. Quantities to te Measured.

a. Before listing the outputs ultimately needed from the experiment we
will discuss the quantities that will actually be measured. Briefly we need
to measure things 1ike who could hav~ detected whom and when, who actually
detected whom and when and why, who "killed" (laser hits) whom and when, and

how was information transmitted and used.

b. For each combat vehicle (attacker as vehicles and defender vehicles)
“he test time-tagged data of the following types will be collected:

(1) position location

(2) line-of-sfght (laser A)

(3) detection

‘4) firing (laser B)

(5) hit and/or kiN

(6) video through the gunner sight
(7) audio

246

Al e et otk SARIBLAL b e i s

.
G st in e b




T
WL
L
13
[
I
I

LI TR
Eeptar ey

6. Uncontrolled Factors.

In order to approach tactical realism many important factors (that could in-

: fluence the quantities measured) will not be controlled. However, to the

£ extent possible, the values assumed by these uncontrolled factors will be

o measured or estimated during the trials or recaptured after the trials. Some
1 of these uncontrolled factors are 1isted in Table 2. The attacker task force
£4 commander and the defender platoon commander, who will be varied extensively B
during the course of the test, will each be given a broad mission. The details :
-0f how they carry out their missions will be up to them. Actually data on how , .
much variation we observe between individual commanders presumably carrying o N
out the same mission will also be important information. ' '
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: 7. Major Test Outputs. i

We list here only the most important measures (dependent variables) expected to
be produced by analysis of the data collected during the trials. The next step
would be to correlate each of these measures with the controlled variables
(Table 1) and also with the uncontrolled variables (Table 2). (An example is:
correlation of attacker detection rate with the force ratio - obtained by
dividing the number of attacker weapons ready by the number of defender weapons
ready. This initial force ratio will usually vary from battle to battle, de-
pending on the states of readiness of the individual weapons plus their instru-
mentation added on for the test.) The major output measures are as follows:

e

TP L e 1
\ trmemes vy 4

conditional (given a detection)

a. attacker detection time

unconditional

b. attacker detection time

conditional (given a detection)

1]

¢. defender detection time

unconditional

d. defender detection time

W ATBERSIT TF I TN T - ¢

e, attacker engagement time

f. defender engagement time

g. time at Teast 3 attackers in LOS, etc. ;
h. time at least 3 defenders in LOS, etc. 2
1. attacker fire distribution patterns:

(1) defender sites intervisible with attackers but not engaged by
attackers

(2) defenders engaged "simultaneously" by 2 attackers, etc.

(3) number of rounds fired per engagement

247




et SR S S el e el ogtcidadetad
PR L AW WA A e SE . wa 0 I BSOS

oy oo bty
4ty O BT G .
' [ -

j. defender firc distribution patterns:
(1) -attackers intervisible but not engaged by defenders

(2) attackers engaged "simultaneously" by 2 defenders, etc.

(3) number of rourds fired per engagement
" k. freqhency of attackers engaging false targets
1. frequency of defenders engaging false targets
2. Additional Hypoii :ces.
Although the primary purpose of ARCOMS is to collect data on detection rales,
X engagement rates, etc. to provide inputs for combined arms models and war games,
N the same data set will be used by A to investigate a number of tactical
: hypotheses 1in the areas of:
a. detections by attacker
b. attacker communications
c . "tacker control of movements
! d. . -uradation or cnhancement
e. defender allocation of fire
f. defender discngagements
These hypotheses, after field testing, will be efther rejected, accepted, or
~u.tified and the accompanying analyses will provide insights that will be
‘ven more vatuable than model 4mputs. These insights might contribute to
{mprovement in the structures of the combat models and to more credible
theories of combat.
3. Analysis Procedures.
e following types of analyses will be carried out with the ARCOMS data:
2. Plotting and graphics of battles
iy Serial gorrelations
. Des. dniavie ste’ yLbire
d. Aunalysis nof covarine
Theoretical di:'r7-:iion filting

Hypotheses ‘estiic
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g. Evaluation of tactics
h. Comparison of LOS data with digitized terrain
1. Analysis of detection data and model improvement (by NVEOL)
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TABLE 2 - ARCOMS - UNCONTROLLED FACTORS

DEFENDER

Decision to move
. Number of weapors ready-

- Communications (target handoff)
Frequency of firing ~ :
Distribution of fire .

. Amount of concealment
Open-fire ranges

ATTACKER
1. Velocity

NO‘:"\&(&N—‘

a. 1individual weapons
b. platoons

Specific movement patterns (use of terrain. trees, etc.)
. Number of weapons ready

Use of overwatchers

Familfarity with terrain

Communications (target handoff)

. Distribution of fire

Frequency of firing

ENVIRONMENT

Visibility
Weather

Other obscuration
Range (distance)
Vegetation

Angle of sun

. Target background

o\nonnpw!v

» e
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EXTREME VALUE QUANTILE RESPONSE EXPERIMENTAL DESIGN

Jill H. Smith
Jerry Thomas
Probability and Statistics Branch
Ballistic Modeling Division
U.S. Army Ballistic Research Laboratory
Aberdeen Proving Ground, Maryland

ABSTRACT. An experimental design has been developed to be used to
determine the shielding thickness required between rounds stored in a
storage area to prevent round-to-round propagation from an initial explosion.
Extreme value quantile response techniques were used with shielding
thickness as the stimulus variable. The developed design drastically
reduces the sample size required for a given quantile and confidence
when compared with known distribution-free extreme value designs.

1. INTRODUCTION. The Terminal Ballistics Division of the Ballistic
Research Laboratory encountered the problem of determining how thick the
shielding should be between rounds of ammunition stored in a storage area
to prevent round-to-round propagation from an initial explosion. Vulnera-
bility analysis indicated that the probability of survival of the storage
area would drastically decrease with an increase in the number of rounds
exploding. Prior testing has shown thav shielding material placed
between rounds could prevent neighboring rounds from exploding. Due to
space limitations in the storage area, it was desired to keep the shielding
thickness to a minimum and simultaneously minimize the probability of
round-to-round propagation. :

It was decided that the specific objective of the test would be to
find the shielding thickness needed to be 90% confident that the proba-
bility of a neighboring round exploding is less than 0.1.

The problem appeared to fit into the category of extreme value
quantile response problems. Defining X as the stimulus variable, in this
case the thickness of the shielding which effects the stimulus, and the
probability of a response associated with a given X, x, is described
by a nonresponse function M(x). (Ususl notatlon has M(x) as the probability
of response. However, defining M(x) as a nonresponse is more natural for
this problem.) This function is assumed to be monotonically nondecreasing
with increasing stimulus levels.

A discussion of available designs and the modified design chosen
for the experiment is contained in the following chapters.

2. AVAILABLE DESIGNS. A nonparametric approach was taken because of
the lack of information about the response function. As stated, the
quantile in which we are interested is a = .10, and therefore is in the tail
of the response distribution. From a review of the available designs in
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the literature the only nonparametric tast designs available for testing
in the tail regions are the Alexander Bxtreams Value Design and the

Rothman Design. Of these, the Alexander Extremé Value Design is preferred
since 1it:

1) 1is "generally more efficient than other available nonparametric
designs, and is asymptotically as efficient as the best pttanotric stochastic
spproximation when distributional assumptions are valid,"

2) has significantly simpler design rules and analysis procedures

‘than the Rothman Design, and

3) does not differ in median required sample size.
S. ALEXANDER EXTREME VALUE DESIGN. The Alexander Extreme Value

Design assumes only & monotone nondecreasing response function as the

stimulus increases.
A. Design Rules

1) The first test is at level (shielding thickness) x , the
a priori best guess of X,.

2) Testing is performed by alternately increasing and decreasing
sequences of test levels, The test levels are increased or decreased by a
step size §, where § is a fraction of an estimate of the standard devistion.
Terms such as '"higher" and "level above' refer to thicker shielding
levels, and "below" and "lowest' refer respectively to thinner and thinnest
shielding thickness levels. .

3) The first sequence decreases the levels until a response
(explosion) is observed.

4) The first test of an increasing sequence is at the level above
the highest level at which a response has been observed. The increnii
sequence ends at level X, such that in the corresponding zero region* less
than or equal to X, at lgast N nonresponses have been observed. Values
for N can be found from

a-a=1-p 2.1

where N = [n] + 1 and P is some specified probability.

—
D. Rothman, M. J. Alexander and J. M. Zimmerman, The Design and Analysis
of Sensitivity Experiments, NASA CR-62026, Vol. I, p. 9.

2Zero region - stimulus region above the highest level at which a response
has been observed.
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5) The first test of a decreasing sequencé is at the level above
the highest level at which a response has been observed. If the result
is a response, the sequence ends; otherwise, one more test at the next
lower level is performed.

6) Testing terminates when there are three adjacent levels, xr, :
xr + § and xr + 28 such that at least one response has been observed at xr
and none at a higher level, and a total of N nonresponses have been

observed at ero § and xr + 26, (8 is the step size between levels.)

7) The maximum likelihood estimate of X, Xy is found by the method
of reversals and linear interpolation (see Appendix).
B. Analysis

We are interested in the a = .1 quantile of the response distribution,
that is, the value, X v 8t which the probability of a response is .1.
Therefore, the probability of a nonresponse at the X , quantile is (1 - 1),
The probability of n nonresponses, assuming the n tests are independent,
is (1 - .l)n. The probability of at least one response out of n tests
is1-(1- " Specifying the probability of at least one response
out of n tests at the X 1 quantile to be P = .9, we have

S=1- (-1

This, with a slight algebraic manipulation, is Equation 2.1 with a = .1
and P = .9, Solving, N = [n] ¢+ 1 = 22, Hence, we would expect with
probability .9 at least one response out of 22 tests at the X , quantile.

If we observe 22 nonresponses at some level X,, we can assume we are not
at the X 1 qQuantile and, in fact, the
Prob {x.1 <X} >.9.

Using the above argument, we can conclude from the Alexander Extreme
Value Design that the level at which the true probability of response
is .1 is less than X 2§ with ninety percent confidence. The point estimate

of the X 1 quantile can be found using the method of reversals outlined in the
Appendix.

C. Simulation

Based on 'guestimates' for X and X ,c, 8 response distribution was hypothe-

sized with which to Monte Carlo the Alexander Extreme Value Design for
a= .1 and P = .9. The response distribution assumed was the cumulative
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normal distribution with mean = .S and variance = .14, (Note, however,
that the test design and analysis procedures are distribution-free.)
The smallest practical step size of shielding thickness was 1/8 inch.

Figures 1 and 2 are examples of the Alexander Extreme Value Design

Monte Carloed to illustrate the design rules. Responses are denoted by
X" *'s and nonresponses by '0" !'s, I1 denotes the i-th increasing sequence

and Dj the j-th decreasing sequence. The number of rounds required (NR),

the maximum likelihood estimate of the .1 quantile (x.l). and the
(xr + 268) level are given for each simulation.

Figure 3 shows the distribution of the number of rounds required
for 500 simulations of the above design. The number of rounds required
is twice the number of responses and nonresponses shown for each simulation
since a donor round must be detonated for each test round. The average
number of rounds required to complete the test was 166, the medisn was
164 and ten percent of the tests required 184 rounds or more.

The distribution of the maximum likelihood estimates of X 1 for
the S00 simulations is given by the histogram in Figure 4. the distribu-

tion of X 1 is asymptotically normal about the true X 1 quantile = 7,83,

The distribution generated by the test data shown in Figure 4 has a
mean of 7.77, which is in good agreement for 500 simulations, and is
approximately normally distributed as shown by the overlying normal curve.

Figure § shows the distribution of level X, *+ 26 for 500 simulations.
This is the level about which we can conclude that the

Prob {X.l <X, ¢+ 26} > .9.

4. MODIFICATION OF THE ALEXANDER EXTREME VALUE DESIGN. The median
number of rounds required for the Alexander Extreme Value Design (EVD), as
described in the previous section, was 164 as determined by the S00
simulations. Since the number of rounds available for testing was con-
siderably smaller, the major objective in modifying the Alexander EVD was
to reduce the number of rounds required, while maintaining the confidence
level and the ability to compute the point estimate of the X ) Quantile.

The Alexander EVD requires that a donor round be detonated for each
test. The number of donors needed can be reduced by using one donor to
detonate up to four test rounds (acceptors). Figure 6 shows the config-
uration of four acceptors per donor. Steel shieiding will be placed
between acceptors, as shown by the dotted lines, if interaction between
acceptors is observed. Optimizing the number of acceptors per donor in
the Alexander EVD reduces the number of rounds required by approximately

33 percent.
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It was noticed that the rounds ubove level xr + 26 were neither used to

establish the confidence statement, nor to terminate the test design, nor to
compute the point estimate of the X j Quantile. By limiting each increasing

sequence above the highest stimulus level at which a response has been
observed, the rounds "“wasted'" above level Xr + 26 can be eliminated. There

is a trade-off in eliminating these rounds since the level X, + 28 can

change if a response is observed at a higher level. Therefore, some testing
should be above X + 26 until more than half the mumber of rounds required

to demonstrate the chosen probability are at levels X, ¢ S and x + 26.

Testing at x and below is used in the determination of the noint estimate
of x

The following test design is the result of many Monte-Carlo simula-
tions in which different starting levels, number of acceptors per donor
and sequences of testing have been tried in order to minimize the required
nunber of rounds, yet retain the confidence level and point estimate of
the quantile X4

A. Modified Design Rules

1) The first test level is X,» the best a priori guess of Xy
§ is the step size between levels.

2) One acceptor per donor is used, in a decreasing sequence, until a
response is observed. Let X, be the highest level at which a response
is observed. )

3) After the first response, the number of acceptors per donor
in each test is increased to alternately three and then four. After the
first response, three acceptors per donor are tested at the next three levels
above xr. Then four acceptors per donor having shielding at levels x
and the next three higher levels are tested.

4) If another response is observed at a higher level, it becomes

and testing continues alternating three and then four acceptors per
dSnor until at least 12 (more than half the required 22) nonresponses
have been observed at the two levels immediately above x .

5) When at least 12 nonresponses have occured at X, ¢ § and X, ¢ 26,
the number of acceptors per donor is reduced to alternately two above X, and
then three, starting at x » for the remainder of the test.

6) Testing terminates when st least N (22) nonresponses have been
observed at the two levels immedistely above the highest level at which
a response has been observed,
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B. Analysis of the Modified Design

As in the Alexander Extreme Value Design, we have N = 22 nonresponses
at Xr + 6 and X ¢ 26 and can conclude that we are not at level the x.l

quantile and in fact,
Prob {X , < X_ + 26} > .9,

The point estimate can again be found using the method of reversals. There-
fore, the changes in the test design have not affected the confidence statement
or the point estimate. .

C. Simulations Using Modified Design

Using the same response function that was used when simulating the
Alexander Extreme Value Design, S00 simulations of the modified design
were also Monte-Carloed.

Figures 7 and 8 are examples of the modified test design illustrating
the modified design rules. Again, responses are denoted by "X" 's and
nonresponses by "0" 's. The abscissa represents individual tests rather than
sequences of tests as shown in the Alexander Extreme Value Design.

'
i
1
2
4
£
3

Figure 9 shows the distribution of the required number of rounds for
the 500 simulations. The median number of rounds required was 67 and the
mean number of rounds, 70. Only ten percent of the simulations required
93 or more rounds.

The histogram in Figure 10 is the distribution of the maximum
likelihood estimates of X 1 for the SO0 simulations. Again, the distri-

bution of the maximum 1ikelihood estimates are asymptotically normal

about the true X . quantile s 7,83, The distribution shown has a mean of
8.00, and is appi%ximately normally distributed as shown by the overlying
normal curve. Figure 12 shows the distribution of number of rounds required
for both the Alexander EVD and the Modified Alexander EVD. The Modified
Alexander EVD is on the left and the Alexander EVD is on the right.

5. SUMMARY. The Alexander EVD was modified, mainly, by using multiple
rounds per test and by limiting the number of rounds above the highest
response. These changes resulted in a design that required less than half
the rounds of the Alexander EVD in the simulations performed. The range of
the required number of rounds (NR) for the Alexander EVD was from 134 to 256 s
and for the modified Alexander EVD was 46 to 140. The Modified Alexander §
EVD has simple design rules that permit the estimation of an extreme ;
value of a quantile response function and the associated confidence interval.

This report used only the normal distribution as the assumed underlying
distribution for the Monte Carlo simulations. Other distributions are currently
being used for this purpose. A reduction in the number of rounds required
for these distributions is also expected. Recall, however, that neither
the experimental design nor the analysis methods require the assumption of
a response distribution. The design is distribution-free.
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APPENDIX
METHOD OF REVERSALS FOR SENSITIVITY DATA

1. NETHOD. The method of reversals is a maximum-likelihood procedure
for obtaining distribution-free estimates of a monotone nondecreasing
response function. The test stimulus lavels axe X, (i = 1,2,...,k) and
are ordered from thickest to thinnest shielding thickness,

’(l. > ’;:! P ves > ’(“ ’ (“' 1.)

1€ Py is the estimate of the probability of response at xi. and if we

assume that the response function is monotone nondecreasing, then neces-
sarily

~

Pp<pP,<...<p. (A.2)

The algorithm below can be used to find the estimates of the response dis-
tribution and their associated stimulus levels.

1) Let Xy (1=1,2,...,k) be the k stimulus levels at which data have been
collected, where X, > Xy o0 ® Xk. We wish to find the estimates, Py» of
the values pi = M(xi)' the response probabilities at the levels X, vhich

satisfy Equation A.2.
2) Let oy (i=1,2,...,k) be the number of tests performed at level x1 and
fi (i =1,2,...,k) be the number of responses observed in the ny tests,

Consider the sequence
£, 5 fx

-—. -' s v ep
Mo '

If this sequence is nondecreasing, then the estimates p; are simply given

by
b
fi fi+1
3) 1f for some i, — > » Teplace both by
o Mag

Fiaer fi* %40

N L

1,i¢1 ™Mt Mg
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- F The new sequence is then
T E
o H 5 £ T4 S £y
D P *ces » » » sy T e
; " n Mo MLaa Me2 ™y
PR | :
: If this sequence still contains a reversal, s pair of consscutive fractions
: for which the first is greater than the second, replace the pair with a
: single term as above. This process is continued until one obtains a non-
: decreasing sequence:
e 1§ |
" % Y
- ] ) L )
NNy ny :
¢ £, + ...+ ¢f 1
where Hl" ni re—s ni” for appropriate i and s. ]
3 i ies /
4. The final estimates are given by :
~ ~ ¢ i‘
Pi-....pi§s.ij1 . 3

5. Linear interpolation is used to compute the values of the response
function between stimulus levels tested.
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2. SYANPLE.  If the results of ithe experiment were as shown.in Figure Al.. . .
the saxisum 11kelihood estimate found by the method of reversals is as N
follows: |
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The shielding thickness corresponding to the .1 quantile is found by
linear interpolation.

F

E /8 = 1 . 11

4 .01 ['_‘ .01

{ .13 1

E 11
L 9/8 = 1.13 .0

4
i
{
4
3
b

The shielding thickness associated with the .1 quantile is 1,01 inches.
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The Rank Transformation as a Pobust
and Powerful Tool for the Analysis of Experimental Data

W. J. Conover, Texas Tech University

Abstract

Rank Transformation procedures are ones in which the usual parametric proce-
dure is applied to the ranks of the data instead of to the data themselves. 1In
the one way layout the rank transformation procedure is equivalent to the
Kruskal-Wallis test. Simulation results using various distributions show that
this procedure tends to have more power than either the F test or Fisher's ran-
domization test, a well known nonparametric procedure.

The rank transformation procedure for the two way layout is compared with
the F test and Fisher's randomization test under normality and several types of
nonnormality. Overall the rank transformation procedure seems to be the best.

The Fisher's LSD multiple comparisons procedure in the one way and two way
layouts {s compared with a randomization procedure and with the same procedure
computed on ranks. In nonnormal situations the rank transformation procedure
appears to maintain power better than Fisher's LSD or the randomization proce-

dures. The conclusion of this study is that the rank transformation provides a

reasonable alternative to the usual analysis of experimental designs.
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1. INTRODUCTION

£

3
L- .

i £
; 1

bR ALY T T e

Three methods for analyzing experimental data are compared in this study.

The first is the standard analysis of variance procedure based on the assumption

e

of normality and assumed to be robust in most situations encountered in prac-

~ tical applications. The second is a randomization procedure attributed to R.A. 3

Y e s LS SO

Fisher (1935), which 1s known to be "most efficient" in some sense, and is

Ly

assumed by many practitioners to be the best test one could possibly use,

RSUTFRE FTPO

although it is difficult to use even with a computer. The third procedure

Dstvdge et

involves a rank transformation of the data prior to the application of the first

e

procedure, that is it {s an analysis of variance on the ranks.

These three procedures are compared in a completely randomized design (a

AN M L o LTI

2 one-way layout) and in a randomized block design. Other designs could just as
easily have been selected for comparison, but the randomization test fnvolves 3

such extensive computer time that only a 1imited study is possible. The robust- :

3 ness of all three procedures 1s estimated under the null hypothesis by computer

simulation, and the power is estimated under the assumed existence of treatment

k
E effects, also by computer simulation. A multiple comparisons procedure is used
E whenever the null hypothesis is rejected, and comparisons of the three multiple

comparisons procedures are made also.
These results were obtained by Ronald L. Iman of Sandfa Nat{onal
Laboratories in some joint research work with the author. More extensive

results appear in the unpublished manuscripts by Iman and Conover (1980a and

1980b) and by Conover and Iman (1980).
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The Rank Transformation as a Robust
and Powerful Tool for the Analysis of Experimental Data

W. J. Conover, Texas Tech University

Abstract

Rank Transformation procedures are ones in which the usual parametric proce-

dure is applied to the ranks of the data instead of to the data themselves. In

the one way layout the rank transformation procedure is equivalent to the

Kruskal-Wallis test. Simulation results using various distributions show that

thi1s procedure tends to have more power than either the F test or Fisher's ran-
domization test, a well known nonparametric procedure.

The rank transformation procedure for the two way layout is compared with
tte F test and Fisher's randomizatfon test under normality and several types of

nonnormality. Overall the rank transformation procedure seems to be the best.

The Fisher's LSD multiple comparisons procedure in the one way and two way
laycuts iz compared with a randomization procedure and with the same procedure

computed on ranks. In nonnormal situations the rank transformation procedure

appears to maintain power better than Fisher's LSD or the randomization proce-

dures. The conclusion of this study is that the rank transformation provides a

reasonable alternative to the usual analysis of experimental designs.
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2, THE COMPLETELY RANDOMIZED OESIGN

Let Xjj, 1€i<nj, 1¢J<k be random variables representing the ith observation
in treatment j in a completely randomized design. Let X, j and X, represent the
sample treatment mean and the overall mean respectively. The F statistic is

given by

(NK) Ing (R4 -X..)2
3 HA PRTPR (2.1)

F =

(k-1) 17 (X453 -X.52

LN

Where N = [ nj s the total sample size. The F test compares the F statistic
with the F distribution, k-1 and n-k degrees of freedom, and rejects the null
hypothesis of equal treatment means if F is in the upper o tail of the F
distribution. Such a test is exact under assumptions of identical normal
distributions, but is robust even for some nonnormal distributions. If the null
hypothesis is rejected, Fisher's LSD procedure is used to declare treatments
J) and jp significantly different when the inequality

e/t . 1
1%y - Togp b > iz ™Y 5+ 5y, (2.2)

is satisfied, where

wse b 11 (g Xp? (2.3)
LN
and where to,m is the (1-p) quantile from a student's t distribution with m
degrees of freedom.
For Fisher's randomization test the F statistic from Equatfon (2.1) is com-
parad with the distribution of all possible F c<tatistics arising from the Ni/
n (nj)! ways the same N observatfons can be partitioned into k groups of size

ny 2ach, j«1, ..., k. [In practice, even with high speed computers and moderate
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sample sizes the total number of combinations is too large to handle, so the
suggestion of Dwass (1957) is followed. That is, a random subset of the total
number possible is used to obtain an unbiased and consistent estimate of the
distribution function of the randomization statistic. In this paper k=4 and
(n1s np, n3, ng) is (7, 8, 9, 10). A subset of 1000 partitions, out of the more
than 1018 partitions possible, was used to estimate alphahat.

Whenever the alphahat was 5% or less multiple comparisons were made using a
procedure similar to that described above, only r&stricting the permutations to
the ways the observations in the two samples being compared can be partitioned.
Here again, only 1000 of the possible permutations were used for each
comparison. The treatments were considered significantly different if the
observed value of | X j, - X j,| was among the largest 5% obtained.

The third test consists of replacing data by the ranks from 1 to N, and per-
forming an F test on the ranks. This is equivalent to the Kruskal-Wallis test.
Multiple comparisons were made by computing (2.2), as in the Fisher LSD
procedure, but using the same ranks used above instead of the data. These three
procedures are called the F, R and RT methods respectively.

Comparisons of these three tests were made for three population distribu-
tions, the normal, lognormal and exponential distributions. The null case was
examined, along with three non-null settings corresponding to slight, medium,
and strong differences in treatment effects. The parameters used are sum-
marized in Table 1.

In each of these 12 combinations of distributions with treatment effects,
500 replications were made to compare the robustness and power of the three
tests., These results are given in Table 2, They show that the Fisher ran-

domization test and the rank transform test are robust for all three distribu-

tions, as expected because they are both nonparametric procedures. The F test
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TABLE 1. The population effects used in the comBIeLe1y randomized design simu-

lation study: Means of the normal 80
f

lognormal (< ¢ of logs = 4), means

EFFECTS
Null
Slight

- Medium

Strong

TABLE 2. The percent of time the null hypothesis was rejected in the completely

NORMAL
(0,0,0,0)
(0,0,0,1)
(0,0,1,2)
(0,1,2,3)

(0,0,0,0)
(0,0,0,1)
(0,0,1,2)
(0,1,2,3)

LOGNORMAL

= 4), means of the log of the
the exponential.

EXPONENTIAL

(1,1,1,1)
(2,2,2,3)
(1,1,2,3)
(1,2,3,4)

randomized design, four treatments, ny=7, no=8, n3=9, ng=10.

cFFECTS

Error Rate
in Nuy?! Case:

Power Under

Slight Effects:
Medium Effects:

Strong Effects:

NORMAL

R F RT

5% 5% 5%

19% 19% 19%
52% 52% 49%
72% 72% 70%

1=

6%

9%
18%
22%

F

2%

a%
12%
13%

LOGNORMAL

17%
43%
69%

EXPONENTIAL
R FE ORI
4% 4% 5%
12%  10% 12%
47% 40% 46%
43y  37% 53%

on the other hand is robust for the normal and exponential distributions, but

quite conservative for the lognormal distribution.

The conservative nature of

the F test carries over to inhibit its power for detecting differences in

1ognormal distributions.

The rank transform procedure shows the most power in

the lognormal and exponential cases, and about the same power as the other two

procedures when the distributions are normal.

When the null hypothesis was rejected using the previous procedures, the

corresponding multiple comparisons tests were made as previously described.

results, summar{zed in Table 3, show the same types of results as in Table 2.
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TABLE 3. The number of times treatment pairs were declared significantly dif-
ferent in 500 simulations, using CR design with 4 treatments, ny = 7,
n2 = 8, n3 =9, ng = 10.

‘- " TREATMENT NORMAL LOGNORMAL EXPONENTIAL
: EFFECTS R RT R T 1T R TF RT
: Null 1,2* 6 6 7 10 9 8 6 8 9
. - 1,3* 5 6 5 8 7 7 5 9 9
£ 2,3 6 4 5 7 71 12 10 10 10
gi 1,4*% 4 3 3 16 5 9 4 4 8
: 2,4% 5 5 4 10 6 9 35 7
% 2,4*% 6§ 6 5 4 3 6 6 5 1
E Slight 1,2* o2 1 3 5 17 7 71 13
3 1,3% 14 19 12 4 4 13 0 7 12
: 2,3* 21 23 20 4§ 2 22 7 & 15
: 1,4 54 53 51 11 20 &7 20 24 23
‘ 2,4 56 53 52 11 18 57 20 28 15
: 3,4 48 48 54 16 18 S1 30 3¢ 24
3 Med1um 1,2+ 16 24 19 10 0 20 9 0 13
£ 1,3 63 713 77 g8 4 N 56 37 93
i 2,3 81 78 83 15 5§ 61 75 42 89
[ 1,4 189 200 198 26 38 184 143 174 186
2,4 206 210 203 45 36 180 172 180 185
i 3,4 81 79 75 3 36 86 54 86 63
] Strong 1,2 69 77 64 9 0 60 0 8 64
3 1,3 207 220 209 22 4 210 86 56 146
2,3 64 80 88 14 4 90 3% 27 49
1,4 332 338 339 49 59 328 148 137 208
2,4 220 236 235 51 68 233 84 108 95
{ 3,4 79 81 76 39 49 87 3% 76 38

Simple totals:
Identical populations 100 118 97 76 48 123 67 59 107
Some effects present 1749 1826 1804 362 349 1775 1000 1017 1278

*These populations are identical.
That is, the LSO procedure on the ranks has more overall power to detect

differences where they exist than the other two types of procedures do. In

summary, for the CR design the transformation to ranks prior to the usual analy-

sis improves the robustness and power of the usual analysis in nonnormal

situations without losing much of the fine qualities of the usual analysis in

the normal situation.



3. THE RANDOMIZED COMPLETE BLOCK DESIGN

Let X35, for 1<icb and 1¢j<k, be random variables associated with the ith
block and the jth treatment, and let X; , X j and X be the sample block,
treatment and grand means respectively. The F statistic is given by

ey § Ky -1 (3.1)
! § (K3 - X5 - %y, + X, )2

The parametric F test compares the F statistic with quantiles of the F distribu-
tion with k-1 and (b-1) (k-1) degrees of freedom. These quantiles are exact
under normality, additivity, and equal variances, and are reasonable approxima-
tions under mild violations of the normality assumption. If the F statisti¢ fis
in the upper o tail of the F distribution, the nul) hypothesis of equal treat-
ment means is rejected, and multiple comparisons are made. Treatments j; and

Jo are declared significantly different 1f the inequality

| X3y = Nl > toaz, (b-1) (k-1) / 2(SSE)/(b(b-1) (k-1))  (3.2)

is satisfied, where SSE is the denominator of Equation (3.1), and where tp’m is
the pth quantile from a t distribution with m degrees of freedom. This is the
well known Fisher's LSD procedure.

For Fisher's randomization test, as presented by Welch (1937) and Pitman
(1938), the F statistic is used, but not the F distribution. The F statistic is
computed for each of the (k!)b configurations of the observations, obtained by
permuting the observations within blocks. If the observed F statistic is one of
the (k()b. a largest of these, the null hypothesis is rejected. In this study
k=3 and b=5, so the (31)3(.05) = 384 largest values of F constitute the critical

region. (The actual value 388.8 is rounded down to the first multiple of 6,
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because the configurations appear in a multiplicity of 6 and the alpha level

should be £ .05.) The actual number of possible F values greater than or equal

‘to the observed F value s divided by (k!)P to obtain “alphahat," sometimes

known as the p value or the critical level.

If alphahat {s less than or equal to .05, multipie comparisons are made by
permuting only those observations in the treatment pair being considered.
Because there are effectively only (2!)5 = 32 different permutations, the treat-
ment pair is declared significantly different it and only if all pairwise dif-
ferences have the same sign, at a level of significarce 2/32 = ,0625. For
comparison purposes these same values of .05 and .0625 were used in the F test
described previously and in the following test.

The third test is a rank transform procedure found by Iman (1974) and
Conover and Iman (1976) to have gaod properties of power and robustness in ran-

domized block designs. First all bek observations are replaced by their ranks

from 1 to bek. The F statistic of Equation (3.1) is computed on these ranks and
compared with the F distribution, k-1 and (b-1) (k-1) degrees of freedom as an
approximation procedure, just as in the first method described. Multiple com-
parisons are made using Equation (3.2) just as in the parametric case, but using
the same ranks used above rather than reranking each pair of samples in a
Mann-Whitney fashion.

This study examines normal, lognormal and exponential distributions, undeé
the null case and with slight, medium and strong treatment effects. Under each
of these 12 population-treatment combinations 500 replications were made, and
the three tests conducted. Thus 6000 computations of the F test (F) and the
rank transform procedure (RT) were made, and 7,776,000 F statistics were com-

puted for the randomization test as a different null distribution must be found
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TABLE 4. The popula%ion effects present in the simulation study: means of the
normal (o2 = 4), means of the log of the lognormal (o2 of logs = 4),
means of the exponential, Add block effects (1, 2, 3, 4, 5) to the
means in the five blocks.

EFFECTS NORMAL LOGNORMAL EXPONENTIAL
Null (0,0,0) (0,0,0) {0,0,0)
Slight (0,0,1) (0,0,1) (0,90,1)
Medium (0,1,2) (0,1,2) (0,4,6)
Strong (0,1,3) (0,1,3) (0,7,9)

in each case, Specjfic values of the parameters used are listed in Table 4.
The results of the three tests are summarized in Table 5 for the twelve
situations described in Table 4. The results are similar to the results for CR

designs presented in the previous chapter. That is, the usual F test on the
ranks has better robustness and power in the nonnormal cases examined than the F
test on the data, and essentially the same robustness and power in the normal

situation. The randomization procedure has power somewhere between the power of

the other two tests.

TABLE 5. The percent of time the null hypothesis was rejected in the randomized
complete blocks design, five blocks, three treatments.

EFFECTS NORMAL - LOGNORMAL EXPONENTIAL

R E ORI R FE ORI R E R
Error Rate
in Null Case: 5¢ 5% 5% 5% 1% 5% 5% 3% 4%
Power Under
Slight Effects: 10% 10% 10% 8% 1% 8% 10% 7% 10%
Medium Effects: 22% 22% 21% 15% 2% 23% 18%  12% 23%
Strong Effects: 42% 42% 42% 34% 4% 41% 20%  17% 27%
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TABLE 6. The number of times treatment pairs were declared significantly dif-
ferent in 500 simulations, using an RCB design with three treatments,
five blocks, one observation per cell.

- DISTRIBUTION
TREATMENT NORMAL — COGNORMAL ™ EXPONENTIAL
EFFECTS T~ PAIR R ~F_ RT R T R R_F TR
NuLL 1,2* 11 14 1 9 2 13 9 8 13
2,3% 12 12 18 9 4 15 12 9 13
1,3* 7 11 13 12 4 18 12 10 10
SLIGHT 1,2* 15 16 21 3 0 18 & 4 10
2,3 34 a1 4 17 4 30 18 19 23
1,3 29 36 33 18 4 27 1 17 23
MEDIUM 1,2 4 51 52 16 2 50 37 17 81
2,3 37 48 50 37 6 53 26 42 37
1,3 74 97 96 61 5 110 60 53 109
STRONG 1,2 51 64 65 15 0 56 51 45 106
2,3 96 136 135 105 20 117 22 40 27
1,3 163 204 204 117 19 198 64 57 118
SIMPLE
TOTALS:
IDENTICAL
POPULATIONS 45 53 69 33 10 64 37 31 46
SOME EFFECTS
PRESENT 525 677 677 386 60 641 289 290 524

*These populations are identical,
Multiple comparisons were made when the null hypothesis was rejected

using the previous tests. The multiple comparisons results given in Table 6 are

-

similar to the results obtained for the CR design in the previous section.
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Overall the rank transformation allows more real differences to be detected than

wher. 2ither of the other two procedures is used.

4. CONCLUSIONS

The usual F test, followed by Fisher's LSD procedure for multiple
comparisons, shows approximately the same robustness and power as Fisher's ran-
domization test and the rank transform procedure when the populations are
normal, slightly less power than the other two procedures with exponential
distributions, and considerably less power than the other two procedures when
the distributions are lognormal. This latter result may be due in part to the
extreme conservative nature of the parametric procedure under the lognormal
distribution, or it may be due in part to the nonhomogeneity of variances in the
models considered. Nonhomogeneity of variances is a natural consequence of
positive valued data when the means are different. It occurs often in actual
data analysis, so no attempt was made to alter the situation in this study
either.

Fisher's randomization test is a difficult and time consuming procedure to
use in experimental designs. This study indicates that the extra work required
is probably not justified, because while Fisher's randomization test shows
better power and robustness overall than the F test on the untransformed data,
it compares unfavorably with the F test on the ranks of the data.

The F test on the ranks of the data, with the subsequent LSD procedure on
the ranks, is an easy procedure to use. It has essentially the same power as
the F test in normal situations, and more power than either the F test or
Fisher's randomization test when populations are lognormal or exponential, at

least in the cases studied.
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ALTERNATIVE QUANTILE ESTIMATION

W. D. Kaigh ! 2

The University of Texas at El Paso E.

i

Abstract., An alternative to the conventional sample quantile is pro- E
posed as a nonparametric estimator of a continuous population quantile. ?
-The alternative estimator is a '"generalized sample quantile' obtained by . : ‘if

averaging an appropriate subsample quantile over all subsamples of a fixed
size. Since the resulting statistic i1s a U-statistic with representation
also as a linear combination of order statistics, known results are employed
then to establish asymptotic normality. The alternative estimator is shown
to be asymptotically efficient in the class of nonparametric models specified
by Pfanzagl (1975). Analytic results and Monte Carlo studies with moderate
sample sizes indicate that the proposed estimator usually produces mean
square error of estimation less than that of the conventional sample quantile
and also jackknifes to provide approximate confidence intervals.
1. Introduction. Suppose that F is an absolutely continuous c¢.d.f. with
corresponding p.d.f. f. For 0 < u < 1 let G(u) = inf {x: F(x) = u) be an ;
inverse of F and denote the derivative G'(u) = 1/f[G(u)] when it exists. .
For O < p < 1 define gp to be the pth. quantile of F which satisfies €p = G(p).
We assume throughout that f(Cp) > 0.

Suppose that xl, cees Xn are 1.1.4. r.v.'s with c.d.f. F and denote
the corresponding order statistics by xlzn, ceey xn:n' Assuming no further %
information regarding F, the conventional estimator of the population

quantile £p is the pth. sample quantile X , where [x] denotes the

{(n+l)p]:n
integral part of x. The asyuptotic distribution of the sample quantile is

given by the following well known result (e.g. Wilks (1962), page 273): 71
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In a nonparametric contaxt asaum;ng a positive differentiable p.d.f.,
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Pfanzagl (1975) has shown that the sample quantile is efficient among the class

M

of all translation-equivariant and asymptotically median unbiased estimators.
However, Reiss (1980) has demonstrated that quasiquantiles-may perform con-
siderably better than sample quantiléé when compérisonﬁ are based on the notion
of deficiency as introduced by Hodges and Lehmann (1970).

Kaigh and Lachen!cuch(1981) p;opose and study another alternative to
the sample quantile in an attempt to imp:ove the precision of the estimation
of population quantiles. The alternative estimator 1s a U-statistic with
representation as a linear combination of order statiatics and may be viewed
as a "generali;ed sample quantile" obtained by averaging a sample quantile

estimate over subsamples of the complete sample. Although subsampling schemes

W PRSIV NP T e , n
oy 1 . Wlﬂ'ﬂn‘ LTS wwuv“ ™) WM]; <I;-|| X0 !11

are common and, in fact, our generalized sample median was obtained firat by

Yanagawa (1969) as a robust estimator of location for symmetric distributions,

b i s g

the procedure provides a natural local "smoothing' of the entire sample

quantile function. In a related study Harrell and Davis (1981) consider a

similar quantile eatimator obtained through application of the bootstrap.

In Section 2 we provide the introduction of the alternative estimator
and a discussion of its elementary properties; in Section 3 we determine
the asymptotic distribution of the alternative estimator as an application of
known results concerning linear combinations of order statistics and U-statistics;
in Section 4 we employ both analytic methods and Monte Carlo results to compare

the alternative estimator with the conventional sample quantile estimator;

finally, in Section 5 we jackknife the alternative estimator to obtain in-

terval estimates for population quantiles.




. ————

~sing1e subsample would be Y

2. The Alternative Estimator K[§k+1} )ik;n' For a fixed integer k satisfying

1 < k < n, consider the selection of a simple random sample (without replace-

ment) from the complete sample Xl' very xn and denote the ordered observations

in the subsample by Y An elementary combinatorial argument

l:k;n’ Tvey Yk:k;no
shows that for each integer r satisfying 1 < r < k

Frlriin = %) = (3-1)(::1)1(:)- r<i<r+n-k.

‘For 0 < p < 1 a sample quantile estimator of &p based on the observations ia a

[(k+1)p]:k;n’ We define the alternative quantile
(had

astimator K to be the subsample quantile averaged over all (:) sub-

[(k+1)p] :k;n
samples of size k so that

ré4n-k §-1
@D Kigptign = LG D GDIEIX, T = (k1P

The estimator of (2.)) is obviously translation-equivariant (i.e.,

(x1+c, ey xn+°) = K (xl, cees Xn) + c) and satisfies

K[(k+1)p]:k;n [(k+l)p):k:n

Ki(kb)p) sksn E(Y[(k+l)p]:k;n|x1’ «+oes X ) with expectation u ., (F), the mean
of the r = [(k+1)p] th. order statistic in a random sample of size k from F.
From the development through averaging the symmetric kernel f*(xl, cesy xk) =

over all subsamples, it follows that K is a U-statistic with

*rek ((k+l)pj:k;n
representation also as the linear combination of order statistics given by (2.l1).
In a specialized application to reliability theory Takahasi (1970) also con-
sidered the U-gtatistic above as an estimator of its mean ut:k(F). The weights
which appear in the summation of (2.1) correspond to the probability distribu-

tion of a negative hypergeometric random variable representing the number of indi-

vidual selections (without replacement) required to obtain a total of r “special
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items" from a dichotomous population consisting of-exaéiiyli'"sﬁéeiii 1tems""

and n~k "ordinary items". The mean and mode of the negative hypergeometric

distribution appearing in (2,1) are r(n+l)/(k+l) and [(r-1)n/(k~1)] 4 1, res-

pectively; uhicﬁ indicate a weight function centered appropriately about [np].

A sample quantile is not in general an unbiased estimator of the cor-
responding population quantile, although (l.1) shows that any bias becomes
negligible with increasing sample size; Appeal to a monotanicit& principle
would suggest that the subsampling scheme provides an estimatorlk[(k+1)p]=k;n
of Ep with bias magnitude exceeding that of the conventional estimator
x[(n+1)p]:n' However, it would seem plausible also that the averaging pro-
cedure might result in a reduction of sampling variability adequate to de-
crease the overall mean square error of estimation.

Subject to the obvious constraint 1 < k < n, the assumed subsample size
is arbitrary and the choice k = n in (2,1) gives K[(n+1)p]:n;n = x[(n+1)p]zn
80 the statistics defined by (2.1) form a collection of 'generalized quaatile
estimators’ which i{ncludes the usual sample quantile. As an illustration
consider a complete sample size n = 99 and the estimation of EO.OS' Permis-
sible subsample sizes are then k = 19, 39, 59, 79, 99 with corresponding
{(k+l)p] = 1, 2, 3, 4, 5, where for convenience we have chosen to avoid the
use of fractional order statistics (see Stigler (1977)) and adopted a cone-
vention that a quantile EP 18 estimable from a sample of size k only if
(k+1)p 18 an intager. The estimation problem becomes that of choosing the
gubsample size appropriate to the minimization of E(K[(k+1)p]:k;n - Ep)z.
Althoogh the theory of U~statistics as developed by Hoeffding (1948) would

suggest a choice of the minimal perwmissible subsample size to provide a ker-
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nel estimator of minimum variance, the substicution k=1l in (2.1) provides the
sample xzean as an estimator of a possibly asymmetric population median, Ob-
viously the winimization of mean square error of estimation requires consi-
deration of bias magnitude as well as sampling variance.

Finally, since the exact distributional properties of U-statistics and
of linear combinations of order statistiés typicaliy are intractable, our
subsrquent analyses are concerned with asymototic development and simulation.
Although the robustness properties of an averaging process are-suspect, in
practice the estimator K[(k+1)p]:k;n is computed from a trimmed sample and is

quite robust provided that care is exercised to avoid the sample extremes.

3. Asymptotic Distribution of K[(k+1)p]:k;n' Our immediate objectiv> 1is to

obtain asymptotic distribution results for the statistic K[(k+l)p]:k;n to
facilitate comparison of the estimators introduced in Section 2. Theorem 3.1
requires a fixed subsample size k whereas theorem 3.2 considers a subsample
size increasing in proportion with the total sample size n,

For a fixed subsample size we first formulate and then apply the results
of Hoeffding (1948). Suppose Xis seey X are 1.1.d, r.v.'s and let f*(Xl, cery xm)
be a real-valued symmetric statistic with mean n and second moment

E[f*(xl, veey Xm)]z < o, The corresponding U-statistic for n is then

9 060y xu )

n,-1
Un(XI’ ssey xn) - (m) é f*(xal o

n

where Ch indicares that the summation is over all combinations {al. ceey am} }
of m integers selected from {1, ..., n}. Then Un has expectation n for all

n>mand

i D
(3.1) ni(U_-n) + N(O, m’g,)




et R S PY OEET ) (R PR

e m M e s

where
gy = Var(B(E*(X), «oy xh)|xl)].
Moraover, n Var Un is a decreasing function of n with limit mzcl.
let r = [(k+l)p] and recall now from Section 2 that K[(k+1)p]'k'n is the
Ky

U-statistic for ur:k(r) corresponding to the kernel t*(xl. evey xk) " Xt

Denoting the beta p.d.f. m_ . (x) = [1/B(r,k-r+D)}x" L (10 T, 0 < x < 1, we write -

the expectation as .
1

(3.2) o (F) = l G(u) m_,, (u) du.

Employing the formula for the variance of the projection of an order statistic give
in lemma 2 of Stigler (1969) yields a convenient representation of the asywptotic

vartance k? Var E(xt:klxl) as
1.1
(3.3) oéik(F) - £ £ (uAv-uv)G' (u)G' (V)m_,, (W), (v)dudv.

Application of (3.1) provides

THEOREM 3.1. For 0 < p < 1 and k f1ixed,

G s 2 .o ]
B (‘[(k+1)p]:k;n- ut:k(F)) N(o, ot;k(F)) és n y where r = [(k+l)p].

Although not presented here, a multivariate extension of theorem 3.1 follows easily

from further results in Hoeffding (1948). The univariate development given here

appears also in Takahasi (1970) and it should be noted that the conclusion requires

only the existence of the variance of the rth. order statistic in a random sample

of size k from F. Also, n Var K[(k+l)p]:k;n decreases with limit oéﬂk(F) of (3.3).
For the case of a subsample size increasing in proportion with the total

sample size we formulate the results of Bickel (1967). Let {m, }, 1 <3 <n,

Jsm

n > 1 be a double sequence of constants such that m = 0 for j £ 6n, J > (1-8)n

Jon

for some 6§ > 0 and consider the statistic T If there exists

n
n "581 4,0 Xyia

M(u) of bounded variation on I = [§, 1 -~ &) such that M, (v) -jépu mj,n + M(u)

Definition: uav = min(u,v).
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on a dense set of I and that sgp Vt M) <= (Vi denotes total variatiomn), then

3.4 | KT - E(T)) 3 N0, (M,F))
where
a?M,F) = [l [1(ua v=uv)G' (u)G' (v)dM(u)dM(V).
Next we apply the éboveéve:sion of theorem 4.1 of Bickel to the statistic
K[(k+1)p]:k;n when k/n =+ A, 0 < A < i, ags n + @,

The negative hype:geome:ric probabilities given in (2.1) specify the pro-
bability distribution of a random variable Ur:k(n) corresponding to the rth.
order statistic in a simple random sample (without replacement)from the finite
population {j/(n+l):1 < J < n}. The mean and variance of Ur:k(“) are respec-
tively r/(k+l) = p and r(k=r+l) (n-k)/(k+1)2(k+2) (n+1) > 0 as k,n > =, It fol-
lows by Chebyshev's inequality that Ur:k(n) converges in distribution to the X
unit mass assigned to the point p. Application of (3,4) gives
THEOREM 3.2, For 0 <p <land k/m+ )2, 0 <X <cl, asn=+=

Y D 2

[(k+1)p):k;n
where
2 2 ' 2

OP(F) = p(1-p)/£ (Ep) = p(l-p)(G'(p)]°.
Although not developed here, it follows from theorem 4.3 of Bickel (1967) that
the conclusion above holds whenever k tends to infinity with n, provided that
F has finite second moment and that Ep is replaced with u[(k+1)p]:k' Since under the

Y5 -

conditions of theorem 3.2 it even can be shown that n (K[(k+1)p]:k;n x[(n+1)p]:n)* 0 |
with probability one, the rationale for inclusion of Bickel's results and theorem 3.2 3

is the demonstration that, in a certain sense, the generalized sample
quantile is efficient in the nonparametric models discussed in Section 1. In

addition, the development of theorem 3,2 illustrates the applicability of re-
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sults concerning linear combinations of order statistic to the alternative

estimator. Under more restrictive hypotheses, Bickel's theorem 4.3, in fact,

1

will provide our theorem 3.1 since n (1:1)(::i)/(ﬁ) =my (3/n) and Ur:k(n)

has asymptotic beta distribution for fixed k as n + =,

4. Comparisons of the Quantile Est}mﬁtors K[(k+l] l:k;n® Although preferences

among competing estimators often are established through extensive Monte Carlo
studies, our treatment here is more in the spirit of the '"small sample asympto-
tics" of Stigler (1977). However, some simulation results are included primarily
to evaluate the adequacy of certain snalytic approximations, It is of interest
that the limited small sample numerical comparisons in Yanagawa (1969), (1970)
suggest merit of the generalized sample median in the specialized application as
a location estimator for symmetric distributions.

As an initial step in the comparisons we consider the asymptotic variances
and K

of the estimators X The equality of the variances

[(n+l)p]):n [(k+1)p) :k;n’
given in (1.1) and theorem 3.2 indicate asymptotic equivalence so we consider
ofek(F) of (3.3). First we investigate some specific distributions which per-
mit explicit calculation and provide some insight regarding the behavior of the
alternative estimator. In addition, the examples supply motivation for a sub-
sequent approximation and its limitations. Although the result probably is
available elsevhere, we include details of the calculation of oﬁik(F) for the
uniform distribution since the derivation is probabilistic and possibly new. 1In
the other example we simply list o: (F) of (1.1) and oéﬁk(F) of (3.3), the de~
rivations being quite similar. We assume throughout that (k+l)p and (n+l)p are

integers.

EXAMPLE 4.1, Standard uniform distribution. Let F(x) = x, 0 < x < 1, G(u) = u,

0 <ucl, Ep = p. From (1.1) we obtain

(4.1) o:(r) = p(1-p) = r(ker+l)/(k+1)Z.
294




From (3.3) we have
1
%.2) 02, (F) = 2 { gv u(l-v)m_ . (Wm_ (v)dudv.

An easy manipulation of the integrand provides

f 02, (F) = (e (k-r+1) / (e+1) 2]
l -t - d
2 [ [" [/B(r41, kmtLIB(x k-r2)] uF Q-0) T (1) T  guav.
[s)

The integral above admits an interpretation as the probability that a random

variable V distributed as beta with parameters r+l, k-r+l is less than

r+likt+l
] a random variable wr'k+l distributed independently as beta with parameters

3 r,k=r+2, Consider two independent random samples, each consisting of k+1 ob~-
servations from the continuous uniform distribution on (0,1)., Then it follows

that Pr(v ) may be computed as the probability that the (r+l)st.

r+l:ktl < Vel
order statistic in the first sample is less than the rth, order statistic in

the second independent sample. A combining of the two independent samples and
an elementary combinatorial argument regarding the sample origin of the smallest

2r observations shows that

- e S

|
!

r-1
- K+l kHl |, 2k+2
PrOVestiitr € Yenrl) = xEO Cx ) Grad 1 Cp e

Symmetry of the hypergeometric distribution indicated above provides

)y = 09 (- CEHETH/E.

Pr(v . .

41kt < Vrskel

It follows that

k+1, k+l 2k+2

2
(4.3) 02 (F) = [r(k-r+1)/ (HD](L - /D), L ek < x.

From (4.1) and (4.3) we obtain

k+1, k+1, , 2k+2, ,-1
LCIICHO1T > 1,

é
|
i
l:

(4.4) o2 () /o2, (F) = (1 - (
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Here both estimators are unbiased for Ep. go it follows from (4.4) that

K[(k+l)p]:k;n hes (asymptotic) mean square error less than that of

’ % x[(n+l)P]:n for any allowable subsample size if the population‘c.d.f. ig that

of the uniform distribution on (0,1).

o T 'w‘r"'o- VY ETLEPT LI S g -

-x, -1
EXAMPLE 4.2. Standard logistic distribution. Let F(x) = (l+e ") ,

e g, Ty

- ®<x <o, G(u) = log{u/(1-u)}, 0 <u <1, & = loglp/(1-p)].
Then

: o:(F) = 1/p(1-p) = (kt1) /e (k-r41) .

2 . _ o k=1y k-1, 2k-2
o2, () = K/ (-1 (k-0)][1 - (TDCIN/Gi N L <x < ke

EXAMPLE 4.3. Standard exponential distribution. Let F(x) = l-e ',

0 <x <», G(u) = =log(l=u), 0 <cu <1, Ep = -log(l-p).

L
e
EE
]
E
Ef

Then

og(F) = p/(1-p) = r/(k-r+l)
o2, (® = [t/ - OE/GH], 1er <k i

=
EXAMPLE 4.4. Standard power function distribution (}). Let F(x) = xa, ;
0<x<1l, G(u) = uz, 0<ucx l,Ep - p2. 4

Then

02(F) = 4p>(1-p) = 413 (k-t+1) / (k+1)* 3
) 2 2 2
02, (F) = [4r’(o+1) (ker#1)/ (t1) 2 (1t2) )

C - k+2 ,k+2)/(2k+4

(D )G L2 2k

Although many standard distributions such as the normal do not possess
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inverse cumulatives which permit calculation of (3.3), the use of Tukey's

lambda distributions (see Joiner and Rosenblatt (1971) and Ramberg and

Schmeiser (1974) can pgovide suitable approximations. However, as an alter-
native approach we observe instead that the examples presented above suggest
an approximation of cizk(F) adequate at least for qualitative purposes. As
our primary objective is to ascertain the behavior of the alternative esti-
mator over a large class of "well-behaved" distributions, we implicitly as-
sume throughout the necessary smoothness conditions on the inverse c.d.f. G.

Computation of the variance ratios ... the preceding examples suggests

that for r,r-k, and k of moderate size

2k+2, ;-1

L ELESHIT S 0

(6.5) od(F) /e (F) = [1 - C O

NOTE. Examination of °§°R(F) in examples 4.2 - 4.4 indicuates the importance

of the qualifying statement "of moderate size'.

Now the respective mean and variance of the beta density m are r/(k+l) = p

r:k
and r(k-r+1)/(k+1)2(k+2) = p(1-p)/(k+2). Assuming that the continuous p.d.f.

f is relatively constant near Ep, the approximation G'(x) = G'(p) in (3.3)

provides

02 (F) = (c'(p)1° z£1£V s-v)m_ (Wm_ (v) dudv.

[ T T WY AR SO P

The integral above is precisely that of (4.2) computed in the uniform case of

example 4.1 s0 we obtain

02, (P = p(-p) (6" 1711 = TH T/
(4.6) = c;(r)[1 _ (ktl)(ktl)/(thz)], e = [GetLypl.

The preceding presents some justification of (4.5) and the resultant implication
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that the ratio of the asymptotic variances a%(?)/og‘k(r) is "approximately
independent” of F for r, r-k, and k of moderate asire. Another consequence of

(4.5) is the suggestion that the ratio of the asymptotic vari-

i e

ances decreases to 1 with increasing subsample size.

To investigate the adequacy of the approximations of theorem 3.1 and

T g gy

(4.5) we performed 10,000 simulations of median estimation for seven symmetric o -
distribﬁtions based on a complete sample size n = 39 and subsample sizes | 7
k=9, 19, 29, 39, 79. The results appear in Table 4.1 and are qualitatively as é
predicted and quantitatively in quité reasonable agreement with (4.5)(and the
results of examples 4.1 and 4.2),

Recall now that the formulation of theorem 3.1 provides an estimator of
gp which is asymptotically biased in most cases. The simulacions of Table 4.1
were selected to avoid confounding bias considerations (both estimators are

unbiased for the medians of these symmetric distributions) so that the theo-

the more general case, a decrease in variance by the subsampling scheme can
be insufficient to achieve the desired reduction in mean square error of es-
timation. It is clear then that asymptotic bias magnitude should be considered
in the evaluation of the alternative estimator,
For this objective, ignoring all but the first three terms of a Taylor's

expansion of G in (3.2) gives

b (F) = £y 3 PA=P)G'" (p)/2(k#2)
which in conjunction with (4.6) provides the approximate mean square s

error
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“sst:k(F) = oéik(F),“ + (ur:k(F) - £p]2
s p=p) ' (1201 - H L A/

+ [pCl=p)G' (P 12/6(x42)%, ¢ = [(k+1)p].

_ Similarly, x[(n+1)p]:n has approximate mean square error

=~ 2 (1 - 2
MSE,(F) = 02 ()/n + L[ cpa1yp] sa®) = &p]

« p(1-p) (6" () 1%/n + [p(l-p)G'' (P12 /4(n+2) 2,

1t follows that for moderate r,r=k, and k and large n

(4.7)  MSE (F)/MSE_, (F) = {1 + p(1-p) [6" " (p) /6" () }%/4n}

11 - EHEHIED ) ¢ apaep e /e 1T = [asp].

If k is not too small, both bias terms in (4.7) are negligible and the remarks
immediately following (4.6) apply to mean square error as well.

Finally in Table 4.2 we present further simulation results for both sym-
metric and asymmetric distributions for n = 99, k = 39, k = 79, and p varying
from 0.05 to 0.95. The results are in quite reasonable agreement with (4.5)
(the bias terms in (4.7) are indeed negligible) for 0.2 < p < 0.8, The alter-
native estimator performed better than the conventional estimator for all de-
ciles of all distributions except the heavy=tailed double exponential and Cauchy
for k = 39, 79. Problems were encountered for extreme quantiles of the power
function, exponmential, logistic, and normal distributions, also. The corres-
ponding values of r were 2 and 38 (not moderate) indicating difficulty with
the accuracy of (4.5) and/or bias magnitude. However, it should be noted that
the intent of Table 4.2 is to suggest the existence of a single subsample size
k providing simultaneously better estimates for a spectrum of quantiles over a
class of different distributions, and a larger subsample size would eliminate

the aberrant cases. In practice different subsample gsizes probably should be

employed for estimation of different quantiles.
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5, Quantile Interval Estimation. The asympﬁotic results for the point estimators

- i-
x[(n+1)p]:n and K[(k+l)p]:k;n may be employed to obtain large-sample conf

. dence intervals for population quantiles provided that sample estimates may

be obtained for the asymptotic variances of (1.1) and (3.3). Here we consider

application of the jackknife procedure to obtain sample variance estimates of

~ the generalized sample quantile, although an alternative method using the

sample duantile function and tables of incomplete beta functions is described

by Maritz and Jarrett (1978).

First we develop briefly the jackkknife estimator of an unknown population
parameter 6 based on a random sample xl, ceany xn. Let éz be the estimate of

6 based on all n observations and let 5:_1, i=1, ..., n, be the estimate

obtained by deletion of the ith. observation. The pseudo-values are defined
by

A% 20 Al
01 =n en - (n-l) en-l' i=1, ..., n

and the jackknife estimator of 6 is then

N

8 '121 ei/n.

-

A sample estimate of the variance of the jackknife estimator is given by
S% = 52/n where
2« 3, GY - 9%,

Under certain conditions (e.g. Miller (1964))5% is consistent and the
standardized statistic (6 - e)/sé is asymptotically standard normal. The
jackknife estimator may be employed then as a pivotal statistic for robust
interval estimation of 6.

Although the sample quantile represents a classic failure of the jackknife

procedure (see Efron (1979)), we show that the generalized sample quantile

estimator '"jackknifes well"” and the asympototic behavior of the statistic
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E Kr-k'n under the jackknife follows easily by application of results of Arvesen- A
B ehy .
i :
: (1969) concerning U-statistics. ?
. i Deletion of the ith observation provides pseudo-value nkK .. .. - (n-1) Rr tkin-1, | é'
: where the weights required for the computation of K:-k-n-l are g
tk; g
~“§ | 1)(“-j 1)/ " k L, jer, ..., vin-k-1. Since Kr:k;n 1s a U-atatistic the E

. - : 2
pscho-valuea provide average xt:k;n and sample variance sr:k;n given by

2 o1 2
“r:k;n (n-1) igl (Kr:k;n-l - Kr:k;n) '

Application of Arvesen's theorem 6 in conjunction with our theorem 3.1 provides

gyt b

THEOREM 5.1. Por r and k fixed, as n - =

P 3
2 2 3
1) sr:k;n * °r:k (F)
i D
i1) n (Kr:k;n - K (F))/sr:k;n + N(0,1).

We remark that the results of Parr and Schucany (1981) concerning jackknifed
linear combinations of order statistics will produce theorem 5.1 inder more

restrictive conditions on the c¢.d.f. F.

The preceding yields an approximate l-a confidence interval for the popu-

lation quantile Ep given by

(5.1) Korgan £ ¢ "X1-0/2) sr:k;n/n”, r = [(k+1)p]

vhere ¢ is the standard normal c.d.f.

To investigate the validity of (5.1) for small and moderate sample sizes,
additional simulations were performed for the uniform and exponential
distributions. Since the number of distinct pseudo-values obtained 1is n-k+l,
the standard normal percentage points in (5.1) were replaced by those of the

t distribution with n-k degrees of freadom. Results of median interval

i estimates for the uniform distribution based on various sample sizes appear

|
|
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in Table 5.1 while results of other quantile interval estimates for the uniform
and exponential distributions based on a single modarate sample size appear
in Table 5.2. Taking into account Monte Curlo Variabtlity, there is only
small deviation of the empirical confidence levels from the nominal levels
evan for small sample sizes. Although further simulation studies should be
performed, the rvesults of Section 4 suggest adequate validity of (5.1)
for other distributions as well.
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TABLE 5.1 Quantile Interval Escimation K /n"

[k#1)p)tkin & Cnk,a/2 S[(k+1)p):ikin

Based on 1,000 Simulations.

p=0.5 Uniform Distribution

Observed Ratio of
Confidence Level Observed Variance
to Mean Jackknife

Sample Size Subsample Size 0.68% 0.95% Variance PEstimate

n=99 k=79 0.66 0.92 0.93
k=39 0.67 0.93 1.01 E

n=49 k=39 0.66 0.91 0.94 ’
k=19 0.68 0.92 1.01

n=39 k=19 0.68 0.94 0.92 %3'
ke 9 0.70 0.95 0.95 |

n=29 k=19 0.65 0.92 0.9 3
k= 9 0.66 0.93 0.98

n=19 k= 9 0.68 0.93 0.91

*nominal confidence level

o
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TABLE 5.2 Quantile Interval Estimation K[(k+1)p]:k;n *thk,a/2 S[(k+1)p]:k;n/n

Based on 1,000 Simulations.

Uniform Distribution Exponential Distribution
Observed Confidence Observed Confidence
Level Level

P 0.68% 0.95+ 0.68% 0.95¢#
0.10 0.65 0.91 0.66 0.92
0.20 0.65 0.92 0.66 0.93 _
0.30 0.66 0.94 0.67 0.9 i
0.40 0.66 0.93 0.67 0.93 %
0.50 0.67 0.93 0.67 0.93 é
0.60 0.66 0.94 0.66  0.95 !
0.70 0.67 0.93 0.67 0.94 j
0.80 0.68 0.92 0.67 0.93
0.90 0.67 0.93 0.65 0.94

#nominal confidence level

n=99, k=39
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The Nonparametric Estimation

of Probability Dengities in Ballistics Researchw

Chih-chy Fwu
Richard A. Tapia
James R, Thompson

Department of Mathematical Sclences
Rice University

Abstract. The problem of nonparametric probability density estimation {is
considered for higher dimensions. An "onion peel' algorithm is suggested for
3-dimensions. For dimensions of 4 or more, a decomposition procedure is
proposed, which first finds the centers of mass using nearest neighbor tech-
niques, then estimates the density around these centers using fixed mesh pro-

cedures,

Acknowledgement. The authors wish to thank Dr. Malcolm Taylor and Mr. Jerry
Thomas of Aberdeen Proving Ground for bringing the data set used in this
paper to their sttention and for their insightful comments on its analysis,

b /4
This research was supported in part by the Army Research Office {(Durham)
under DAAG29-78-G~0187 , .

309

E
z
i
:
E

o

R TR

3 el b e

DR !



i
b
i

ok emrTb gy B e

Introduction

There are many reasons for the possible failure of stnndar@ parametric
statistical procedures, Among these, the problem of tailiness beyond that
in the model assumed has attracted the most interest. As one example, for
some years now, rank tests have been used as an alternative to likelihood
ratio tests [ 7]. More recently, notions of robustness as delineated in the
Princeton Robuatness Study have moved to center stage in statistical inves-
tigation [ 1]. Both these sets of techniques tend to assume symmetry and
unimodality of the underlying distributions. Both are somewhat tied to one
dimensional probability densities,

A second type of pathology, and the one to which we shall address our-
selves in this paper, is departures of the underlying distributions from
unimodality and symmetry. In this case protection against talliness will be
of little avail. Procedures are required which will be robust ageinst the
unexpected '"in the center."

Of such techniques, the oldest 1s the histogram, which existed {n crude
form as long ago as 1662 [ 4 ). The "shifted histogram' of Rosenblatt {12]
gave greater efficiency and flexibility than those of the histogram. The
still more general kernel estimates of Parzen [11] have found wide applicabil-
ity

Another approach hes been that of series estimstes [ 6, 15). These
have » %oyal group of users but do not presently enjoy the popularity of

kernel estimates.

A suggestion of Good and Caskins [ 3] to pose Bayesian estimation in a
function space setting for density estimation (with s prior messure on the

space of densities) was successfully pursued by de Montricher {10]. However,
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the practicel difficulties of algovithmic {mplementation have given
preference to the related concept (also suggested by Good aud Gaskins) of
maximum penalized likelihood density estimatiom [14; 15 1. This algo-

rithm has been included as a standard routine in the widely disseminated

_ DMSL package [s].

" The three ‘cltegories of density esti.mltion--hiscogrm::‘ (tncl_udi.ng- the
shifted), series, and maximum penalized likelihood-- are by no mesns
exhaustive of the techniques robust against the possibility of multimodality,
but are the most commonly used. Each of these can be generalized to several
dimensions. The technique used in this paper, however, is based on the

shifted higtogram,
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Diacussion

The nonparametric estimation of densities in higher dimensions presents

g AT g

the investigator with difficulties not encountered in the well explored one : S -
dimensional case, 1f we use evaluation on a standard fixed mesh grid, we §'

. have the problem of exponentially exploding cost of computation with

t increasing dimension., Moreover, with kermel (shifced»his;ogram) techniques. % ’%{
we face the empty space problem-- namely the vast majority of grids will |
; contain no data points. So a great deal of our computation will be
effectively wasted. A preferred procedure, then, would be to use a variable
? grid which increases in size in regions of low density but decreases in {?
regions with many data points.
This leads us to the k-nearest neighbor algorithm [2,8]. To delineate
it, we let

1 R

w S RN )

z\x

where d(x,k)

Euclidean distance to the kth nearest data point from x

Vm(x,d(x,k)) the volume of the m-~dimensional sphere centered at x
with radius d(x,k) 3

N

"

the sample size. 2
We note that as k increases, the variability of our estimate for f
decreases, but at the expenée of increased bias. Sufficient conditions for

consistency of the estimate in (1) are (p.84, [151)

b (2) lim k = =
oo

Iim k/N = 0,

N~ o

s ' 312
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For'dcnlicy estimation problems in 1, Z,IQt 3 dim;n;ion?; it is an easy
matter to choose the appropriate k interactively.

As yaf, no completely automated rule for the selection of k {s
available, although an iter#fi;é prsgeﬁur; developed for fixéd'kerhel width
selection [13] appears well suited :6 this task using the formula for the
mean square error of nearest neighbor estimates given in [99.” For low
dimensional densities (1, 2, or 3), it is not difficult to choose k inter-
actively. We simply start with k large-- say N/2-- and sequentially
redince it by powers of 2 wuntil the graphs of the estimated density begin
to display high frequency wiggles, Then we return to the preceding value
of k,

It Is interesting to note that it is the graphing of £ (or some
machine alternative to graphing) which is the greatest problem in density
estimation in higher dimensions. The use of a data based "grid' does not
liberate us from the curse of dimensionality. As an example of this point,
suppose we have a sample of 300 from a 5 dimensional density. An investi-
gator who estimated the density using fixed mesh (20/dim,) would be
required to evaluate f at 3.2 x 106 points. The nearest neighbor
advocate might argue with some validity that we could make do with
evaluating f only at the 300 data points, The argument for this attitude
might be that he is interested at points where £ 1is large-- and these are
most likely to be near the data points. But what sense can he make of
(E(xi); 1i=1,2,...,300)? He must somehow exploit the assumed continuity of
f to "get a plcture” of it. In one dimension, the eye itself would perform
this task from a simple plotting of {f(xi); 1 =1,2,...,300}. In two
dimensions, one would need to use some care in seiecting the appropriate

graphical technique (2 dimensional contour plots, 3-d Calcomp plots, etec.).
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In 3-dimensions (which, due to the added dimension from £, is really a
4-d plotting problem), one will have to be somewhat clever. And in higher

' dimensions, where our essentially 3-d perceptions fail us, what to do is
unclear. There is, unfortunately, a vast difference in knowing the functional
form of f and simply knowing it on a regular (let alone an irregular) mesh.
A knowledge of £ on the continuum would return us tb the happy world of para-
metric probability densities (a low dimensional problem). A knowledge of
f at a discrete number of points leaves us with a problem of high
dimensionality. Of course, we shall not even know £ at a finite number

of points-- only an estimate f£. But from a practical point of view,

inferential difficulties would remain-- even if we knew f exactly at a

discrete number of points.

Let us consider the following question: would we rather have a random
sample of 300 from our unknown 5 dimeasional density f or would we rather
know f precisely at 300 points selected from a uniform distribution over
the 5-dimensional hypercube in which we know a-priori the bulk of the mass
of f 1is imbedded? A little thought reveals that the first of the two

cases is the more informative (though we would surely pick the second for

]

the 1-dimensional problem) on those regions having the greatest density.

This again argues against fixed mesh width shifted histogram estimation and
in favor of nearest neighbor techniques in higher dimensions,

But it also points us toward the desirability of focusing on local

SN FYYR

centers of high density. Let us consider a three dimensional ballistics
data set. As a first step we translate the data to the sample mean and
rescale it so that the marginal sample variances are equal. We now consider

the estimation of f 1in the three planes MV =0, $ =0, 8 = 0. We show,

S

in Figure 5, the procedure whereby this estimation is carried out. Some

¥
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important but mathematically trivial computational savings can be made. For
example, suppose we have determined the distance d(Q.Pl) of a point Pl’
with coordinates (xl,yl,tl) from a sample point Q with coordinates
(x,y,2). Then going to the next point Pz(x1 + 6,y1 ,zi) in the grid, we
have the simple update formula:

(3) dz(Q,Pz) . dz(Q,Pl) + 6% + 26(x - x))

The gain in computational efficienty using this simple update formula is
of the order of 2 to 3 (note that if we had not used a regular grid, this
saving would not have been available ).

Next, we note that if we use (1) for estimating f(xl) for a
predetermined k = pN it is not essential that we use precisely this value
of k in the formula, as long as we know what k 1is. Consequently, we
select randomly a subset of the N data points of size M = 2F (with,
typically, r = 6 or 7). Then we find the distance to the 2%th nearest
neighbor to the grid point X, where 2%/2F ~ p. Call this distance d.
Returning to the full data set, count the number of sample puints at least
as close to x, as d - let the number of such points be called k'(=k).
Then we use the formula

- k' l
3) f(x
N Vm(xl,d)

The information loss caused by this latter '"pilot study' algorithm is
negligible, while the improvement in computational efficiency is of the
order [loglelogzM].

For each of the threé planes, we now interpolate to obtain the

(conditional) iso-€ level curves., (Such curves for MV = 0 are given in

+
:

| st St i i
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Figure 6,) We note that such curves will enclose less and less area as f
increases. Connecting points on the level curves for & fixed value of f
gives us the level surface (with MV coming out of the page) in Figure 7. We
next let f increase to give us the level surface in Figure 8. We continue‘
té 1acrea;é .; until first one bump, then the other disappears. In using
the ''onion peel" procedure for the present problem, it was noted that at the
§ levels of disappearance of the two bumps, the MV values were identical -
thus indicating only that only one modal MV value is appropriate, Naturally,
we might find it desirable to make one or two additional sets of onion peel
plots in determining the coordinates of the modes (each corresponding to one
of the two angular coordinates being used as the coordinate coming out oi the
page), since the "out of the page' coordinate is not as easily dealt with as
the two on the page. In the example at hand, we found two modes with coor-

dinates: MV = 722.51 gm/s, ¢ = -8.15° and 8

24.18°, 45.50°.

It is Interesting to note that for the present example, although
we have used the nearest neighbor variant of the shifted histcgram procedure,
we have used a fixed mesh grid to determine where the density should be
estimated. One would be justified in asking the question: would we have
not have done as well to stay with fixed mesh estimation as well? The
answer is, ''yes, for the present well behaved data set." In general, if
we estimate f at a point in its support, we are implicitly assuming it to
be significantly greater than zero at that point. And, if such be the
case, the many practical advantages of a fixed mesh may be decisive.

In general, the greatest value of a variable mesh should be in pointing
to those regions of relatively high density. Once we have determined the
rough boundaries of these regions, we might do well to use a tuned fixed

mesh estimation on each of the regions. Thus we would be using
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So we are advocating & kind of decomposition into regions of high density
using k-nearest neighbor techniques followed by a fixed (for each region)
mesh estimation of the density in each region.

Although we are still working on this two step algorithm, we can
already indicate some prelimary results. First, we start on the fringes

of the data set. Then taking a data point as the first iterate X, we let

9 2 P ST NN TR e

(5 x_ = Ave(k nearest neighbors of x ). ; -
n n-1 :

YRR g ey

Experience shows that, at least in dimension of 3 or less, the algorithm

in (5) will stop (or cycle) prematurely - i.e., before a bona fide local

i ] maximum of £ has been essentially reached. However, it generally brings us

g into the domain of attraction (for Newton's method) of a local maximum. So 4

3 g

[ then, a two stage averaging and Newton's method algorithm appears to work 3
{

2B well for finding the local maxima of ¢£.

Following the location of centers of high density, we can investigate

o e g St

estimation around each iocally. This might involve, for example, a pre-

liminary investigation using nearest neighbor techniques to determine the
contours of f values 1/4, 1/8 and 1/32 of that at the local maximum. In

many cases, it may be possible to use parametric techniquee for some of the

local densities. In others, a fixed mesh technique - e.g., shifted histo-

gram or maximum penalized likelihood- might prove useful.
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FIGURE 2

N = 1380

k = 300 (too large)
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TESTABILITY OF LINEAR HYPOTHESES IN NORMAL LINEAR MODELS
Gerald S. Rogers
New Mexico State University
Las Cruces, New Mexico

AHSTRACT. Let a normal linear model be represented by Y = X0 +

e. It is shown that the usual F statistic derived from the

. likelihood ratio can be used to test the hypothesis He = O in-

dependently of any conditions of estimability provided that
p(X') + p(H') - p(X' ,H') is positive. (p denotes the rank of a
matrix.) The inherent non-uniqueness leads to the definition of
an effective hypothesis: X6 in the range space of X(I - H+H);

(+ denotees the Moore-Penrose generalized inverse.) [t is shown
that this hypothesis has an estimable form TXé = 0 and that the
procedure is eguivalent to a previous definition of "effective".

1._THE_LIKELIHOOD RATIQO_TEST. A basic linear model is
representable by Y = X6 + e where Y is n by 1, X is a given n by
p matrix with rank r < p < n, & is p by 1, e is an n by 1 normal
random variable with mean 0 and covariance matrix ozln.

If the vector @ is an arbitrary element of the p-fold
cartesian product with real components, say & € ®, the parameter
2 > 0). The hypothesis that 6 is
in a subspace ¢ of ® is represented by 0 = ((€ ,02): 8 € g ,

02 » 0). Denote a likelihood function by 1lik(4 ,Y) and the
ordinary Euclidean norm by #:¢ . A generalized likelihood ratio
test of the hypothesis is based on sup lik(a ,Y)/sup lik(6 ,Y¥)

which reduces to min 1Y - XOIZ / min 1Y - Xeénr

Beg 8¢

space is & = ([ (@O ,02): 0 ¢ ® ., 0

Notation: for a matrix W, R(W) 18 the column range space;
N(W) is the column null space; p(W) is the rank; w+ is the
Moore-Penrose generalized inve